The Onshell Action
· So far we considered
Λ ξ,
S[q(t)] = L dt'
$\int_{\mathcal{L}}$
or tr
$S[P,q] = \int Pdq - H(q,P) dt'$
J _E , ,
Then we considered a variation with the
end points fixed
(tzgz) finding the trajector which extremizes
Which extremites
the altion.
t, 9,
• If we substitute g (t;t,q,t2g2) into the
action we get a number which depends
on the endpoints
S(t 29; t, 9) = S[9]
As we will see $S(t_2q_2;t,q,)$ is of
great physical significance

How Does S depend on to and q2 (Ezqz) Change in the 9 (t) Aq = Sq(t,) Value of 92 $q'(t) = q(t) + \delta q(t)$ (t, 9,) rew path DS = S[q+Sq(t)] - S[q] Sutisfying EOM W different b.c = p Sq | t2 - | dt (-d 26, 2L) Sq (dt 2g Jq) f = p Sq(t2) DS = PAq 1, e. $\frac{\partial g(t_2q_2)}{\partial q_2} = p(t_2)$ Similarly if we displace in time, but leave que the coordinate quechanged, q(t+0t) 9(t) =q(t)

Sq(t)=- q st

Then if q(t) follows the classical path
$$US = L Ut$$

$$\frac{\partial S}{\partial t_2} = L - \left(\frac{\partial S}{\partial q_2}\right) \Delta \frac{q}{\partial t}$$

Dependence of Onshell action on

& endpoints

So Summarizing
$$\frac{\partial S}{\partial t_1} = -E \frac{\partial S}{\partial t_2} = P_2$$

 $\frac{\partial S}{\partial t_2} = -E \frac{\partial S}{\partial t_2} = P_2$
 $\frac{\partial S}{\partial t_2} = -E \frac{\partial S}{\partial t_2} = P_2$

In general, we kept the initial end point (t, q,). If these are also changed then we have analogously

The Onshell Action as Generator of Canonical Transform
Write final coosd
$S(t,q; t; Q;)$ Initial Momentum final time initial $(t; Q;)$ $P; = \partial S$ $\partial S;$
This can be used to generate a canonical transform
dS = pdq - p; dQ; - h dt
Compare
dF = p dq - P dQ - (h - H) dt
Thus the onshell Sgenerates a canonical map which takes the final pf, qf back to the initial one
Pt = 25/29t New Hamiltonian is zero
H = h + 25/2t = h - h = 0
Thus in the new coordinate system the new Hamiltonian is trivial, and Knowledge of S maps the time dependendent problem onto a stationary one, essentially solving the problem. So now we "only" need to find S