The Onshell. Action

- So far we considered

$$
S\left[q\left(t^{\prime}\right)\right]=\int_{t_{1}}^{t_{2}} L d t^{\prime}
$$

or

$$
S[p, q]=\int_{t_{1}}^{t_{2}} p d q-H(q, p) d t^{\prime}
$$

- Then we considered a variation with the
 end points fixed finding the trajectory which extremizes the altion.
- If we substitute $q\left(t ; t, q_{1}, t q_{2}\right)$ into the action we get a number which depends on the endpoints

$$
S\left(t_{2} q_{2} ; t_{1} q_{1}\right)=S[q]
$$

As we will see $\underline{S}\left(t_{2} q_{2} ; t, q_{1}\right)$ is of great physical significance

How Does $S$ depend on $t_{2}$ and $q_{2}$
$\Delta q$ is the

$$
\begin{aligned}
& q(t) \quad\left(t_{2} q_{2}\right) \quad \text { Change in the } \\
& \Delta q=\delta q\left(t_{2}\right) \text { value of } q_{2} \\
& q^{\prime}(t)=q(t)+\delta q(t) \\
& \left(t, q_{1}\right) \\
& \text { r new path } \\
& \Delta \underline{S}=S[q+S q(t)]-S[q] \\
& =\left.p \delta q\right|_{t_{1}} ^{t_{2}}-\int d t\left(-\frac{\alpha}{d t} \frac{\partial \alpha}{\partial \dot{q}}+\frac{\partial L}{\partial q}\right) \delta q \\
& =p \delta q\left(t_{2}\right) \\
& \Delta \underline{s}=p \Delta q
\end{aligned}
$$

ie.

$$
\frac{\partial \underline{s}}{\partial q_{2}}\left(t_{2} q_{2}\right)=p\left(t_{2}\right)
$$

Similarly if we displace in time, but leave


- Then if $q(t)$ follows the classical path

$$
\begin{aligned}
\Delta \underline{S} & =L \Delta t \\
& =\frac{\partial S}{\partial t_{2}} \Delta t+\frac{\partial S}{\partial q_{2}} \Delta q
\end{aligned}
$$

- So dividing by $\Delta t$

$$
\begin{aligned}
\frac{\partial S}{\partial t_{2}} & =L-\left(\frac{\partial S}{\partial q_{2}}\right) \\
& =L-p_{2} \dot{q}_{2} \\
& =-h(p, q)
\end{aligned}
$$

Dependence of onshell action on endpoints

- So summarizing

$$
d \underline{s}=p_{2} d q_{2}-h(p, q) d t_{2}
$$

In general, we kept the initial end point $\left(t, q_{1}\right)$. If these are also changed then we have analogously

$$
d S\left(t_{2} q_{2} ; t_{1} q_{1}\right)=p_{2} d q_{2}-p_{1} d q_{1}-h_{2} d t_{2}+h_{1} d t_{1}
$$

The Onshell Action as Generator of Canonical Transform

$$
\begin{aligned}
& \text { Write } \\
& \text { final coos } \\
& \text { final time } \left.t_{f} ; t_{i} Q_{i}\right) \\
& \text { initial } \\
& \text { lord }
\end{aligned}
$$



Initial Momentum

$$
P_{i}=\frac{\partial S}{\partial Q_{i}}
$$

- This can be used to generate a canonical transform

$$
d \underline{s}=p p_{f} d q_{f}-p_{i} d Q_{i}-h d t
$$

Compare

$$
d F=p d q-P d Q-(h-H) d t
$$

- Thus the onshell, S, generates a canonical map which takes the final $p_{f}, q_{f}$ back to the initial one

$$
\begin{aligned}
P_{f} & =\partial \underline{S} / \partial q_{f} \\
-P_{i} & =\partial \underline{S} / \partial Q_{i} \quad \text { New Hamiltonian } \\
H & =h+\partial S / \partial t=h-h=0!
\end{aligned}
$$

- Thus in the new coordinate system the new Hamiltonian is trivial, and knowledge of $S$ maps the time dependendent problem onto a stationary one, essentially solving the problem. So now we "only" need to ting S

