
Problem 1. (MIT/OCW) Spring system on a plane

A massless spring has an unstretched length b and spring constant k, and is used to connect
two particles of mass m1 and m2. The system rests on a frictionless table and may oscillate,
translate, and rotate.

(a) What is the Lagrangian? Write it with two-dimensional cartesian coordinates r1 =
(x1, y1) and r2 = (x2, y2). There are four coordinates in total.

(b) Setup a suitable set of generalized coordinates (four in total) to better account for the
symmetries of this system. Take one of your coordinates to be r = |r1 − r2|. What is
the Lagrangian in these variables?

(c) Identify three conserved generalized momenta that are associated to cyclic coordinates
in the Lagrangian from part (b). If you think you are missing some, try to improve
your answer to (b). Briefly explain the physical meaning of each of the three conserved
generalized momenta. Show that the equation of motion for r takes the form

meff r̈ = −∂Veff(r)

∂r
(1)

with an appropriate meff and Veff(r).

(d) Write down the hamiltonian function h(q, q̇, t) for the coordinates chosen in (b). Show
that that the velocity ṙ associated with the coordinate r (here r = |r1−r2| is distance
between the particles) can be determined from the energy E and an effective potential
Veff(r) which depends on the rotation rate, i.e. show that

1

2
meff ṙ

2 + Veff(r) = E (2)

(e) By examining the effective potential and its dependence on the rotation rate, show that
there is a solution that rotates but does not oscillate, and discuss what happens to this
solution for an increased rate of rotation. (A closed form solution is not necessary. A
graphical explanation based on the effective potential will suffice.)
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Problem 2. (Goldstein/MIT OCW) Jerky Mechanics

Consider an extension of classical mechanics where the equation of motion involves a triple
time derivative,

...
x = f(x, ẋ, ẍ, t). Lets use the action principle to derive the corresponding

Euler-Lagrange equations. Start with a Lagrangian of the form L(qi, q̇i, q̈i, t) for n generalized
coordinates qi, and make use of the action principle for paths qi(t) that have zero variation
of both qi and q̇i at the end points. Show that

d2

dt2

(
∂L

∂q̈i

)
− d

dt

(
∂L

∂q̇i

)
+
∂L

∂qi
= 0 (3)

for each i = 1 . . . n

Problem 3. Equivalent Lagrangians

(a) (Goldstein) Let L(q, q̇, t) be the Lagrangian for a particle with coordinate q, which
satisfies the Euler-Lagrange equations. Show that the Lagrangian

L′ = L+
dF (q, t)

dt
(4)

yields the same Euler-Lagrange equations as L where F is an arbitrary differentiable
function. Give a proof based on and the action principle. We say that L and L′ are
equivalent. (If you feel like it you might also like to check directly that the EOM are
the same.)

(b) (Goldstein) Using the previous problem (Problem 3), what is the equation of motion
resulting from

L = −1

2
mqq̈ − 1

2
ω2

0q
2 (5)

and what is it related to? Explain why this equation of motion is obvious from the
Lagrangian in Eq. (5) and the result of part (a).

(c) Consider the action of a free particle

S[r(t)] =

∫
dt Cv2 (6)

where C = m/2 is a constant normally associated with the mass. Show that the action
is unchanged (up to boundary terms) by a Galilean transformation, and hence the
transformed version gives the same EOM. If the Lagrangian took the form L = Cv4

this would not have been the case. Thus requiring Gallilean invariance fixes the form
the velocity dependent action to involve the kinetic energy.

(d) Consider a fricitionless block of mass m in one dimension. The block sits on a train,
which accelerates with constant acceleration a0. The block experiences no forces, and
thus the action of the block is simply the free one

S =

∫
dt

1

2
mv2

g , (7)
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where vg(t) is the velocity relative to the ground. Let v(t) denote the velocity of the
block relative to the back of the train.

(i) Write down the relation between v(t) and vg(t), and substitute into Eq. (7) to
determine the Lagranngian for v(t).

(ii) Show that this Lagrangian is equivalent to that of a particle in a potential U(x) =
ma0x where x is the position of the particle relative to the back of the train, and
interpret the result.

Problem 4. A cylinder on a train

Consider a cylinder-like contraption consisting of a cylindrical ring of mass m and radius R,
and a small weight of mass m0 fixed to the rim of the ring (see below). At time t = 0 the
cylinder starts to roll without slipping from rest in the accelerating train, and the weight is
at the top of its arc as shown in the figure below.

x = R�
<latexit sha1_base64="860Ton56W2xhrYVvJK9yzIA/dKE=">AAACCXicbVDLSgMxFM3UV62vqks3wSK4KjNVsBuh4MZlFfuAdiiZTKYNzWNIMmIZ+gWu3OpXuBO3foUf4T+YaWdhWw8EDufcy7k5QcyoNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEYdLCkknVDZAmjArSMtQw0o0VQTxgpBOMbzK/80iUplI8mElMfI6GgkYUI2OlztP1fT8e0UG54lbdGeAq8XJSATmag/JPP5Q44UQYzJDWPc+NjZ8iZShmZFrqJ5rECI/RkPQsFYgT7aezc6fwzCohjKSyTxg4U/9upIhrPeGBneTIjPSyl4n/eb3ERHU/pSJODBF4HhQlDBoJs7/DkCqCDZtYgrCi9laIR0ghbGxDCykBt9swkCzMUkq2H2+5jVXSrlW9i2rt7rLSqOdNFcEJOAXnwANXoAFuQRO0AAZj8AJewZvz7Lw7H87nfLTg5DvHYAHO1y8VKZn2</latexit>

a0

(a) Determine the Lagrangian for the angle φ(t). Here x ≡ Rφ is the position of the center
of the cylinder relative to the back of the train (see figure). Show that the Lagrangian
for φ may be written in a time independent form

L =
1

2
meff(φ)R2 φ̇2 − U(φ) , (8)

where meff(φ) and U(φ) are specific functions of φ

meff(φ) =2m+ 2m0(1 + cosφ) (9)

U(φ) =(m+m0)a0Rφ+m0a0R sin(φ) +m0g cosφ (10)

Hint: As in part (d) of the last problem, in the train’s frame the acceleration acts like
an additional gravitational field of magnitude a0 pulling in the negative x direction.

(b) What is the speed of the cylinder after it rolls for two complete turns.

Hint: use the first integral h(q, q̇, t) associated with the Lagrangian in Eq. (8).
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