Problem 1. 2d isotropic oscillator

Consider the 2d harmonic oscillator which is isotropic
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This is an example of an integrable system, which means if the phase space consists of 2n
generalized coordinates there are 2n — 1 constants of the motion. We will find and interpret
these constants here.
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Show that
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generates rotations in the plane. Why is it constant in time?

Determine the infinitesimal transformation generated by
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Show that the computed transformation leaves the Hamiltonian invariant, and that

this implies that Jy = {J1, H} = 0. Give a physical interpretation of this quantity.

Use the Poisson theorem to deduce a third conserved quantity Js:

1
Jy = 2—% (plpz + wgilez) (4)

Determine the associated infinitesimal canonical transformation generated by this con-
servation law, and verify that it is a symmetry of the Hamiltonian.

We have found three integrals of motion. Using similar manipulations to part (c), one
may show that

{Ji, J;} = teijidy (5)
and that
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Thus any random orbit is selected by choosing .Ji, Jo, J3 to lie on the surface of a sphere.
Describe the motion of the orbit in each of the following limiting cases

(1) Jl = JQ = 0
(iii) J,=J3=0



Problem 2. Phase-space and its characteristic flow

(a) If the number of particles per phase space volume (called the phase-space density)
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is conserved, then the phase-space density obeys a conservation law
of o(fd") , o(fp)
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This equation of motion is analogous to a compressible fluid, where the density p(¢, x)
satisfies the continuity equation
Op+ V- (pv) =0, (9)

with v(t, ) the velocity of the fluid. Eq. (8) does not require Hamilton’s EOM, it just
says that once a particle always a particle, regardless of the EOM.

(i) Show that if Hamilton’s EOM are also satisfied and particle number is conserved,
the Liouville equation (also called the free-streaming Boltzmann equation)
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is satisfied, and that this equation can be written as

0, (10)
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(ii) Eq. (10) is analgous to an incompressible fluid, where Vv = 0, and thus we have
from Eq. (9)

Op+v-Vp=0. (12)

What is the phase-space analog of the incompressibility constraint V - v = 07

Egs. (10) and (11) imply that f(t, ¢, p) that f is constant along the flow lines. Heuris-
tically, this means that we can find the solution to the equation Eq. (11) by tracing the
trajectories backward in time to the initial time ¢, where the initial condition fy(q, p)
is specified. This is known as the method of characteristics, and we will develop this
method here.

(i) Show by direct substitution that for a free particle H = P?/2m the solution to

0f(t,Q, P)

ot +{f>H}P,Q:0 (13)

is
[(L.Q.P) = fol@— T1.P). (14)

where fo(q,p) is the initial consition at time ¢ = 0. The somewhat confusing
minus sign is just a reflection of the familiar fact that if I want to translate a
function F(z) forward by a distance Az = vt, I want the new function F(x —vt).
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(ii) Show more generally that the characteristic solution to Eq. (13) is
f(t7Q7P) :fO(Q(vaatvtO)vp(QaPatatO))’ (15)

where fy(q, p) is the initial condition at time t = ¢.

Here the characteristic solution is as follows — start at time tq with ¢, p and flow
forward in time to time ¢ were the coordinates are (), P. This flow determines
the map (¢,p) — Q(q,p;t,to) and (¢,p) — P(q,p;t,to). The inverse map is
q(Q, P;t,ty) and p(Q, P;t,tg). Thus the characteristic solution can be written or
more loosely

Hint: To prove Eq. (15), first show that ¢, p obey the EOM
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and then prove Eq. (15).

(iii) Using the same notation, what are

Oq(Q, Pyt to) =7 Ohp(Q, Pit,to) =7 (19)
(c) The phase space density at the initial time ¢ = 0 is
1 x? p— By)?
f(0,2,p) = Sy (20)
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(i) Determine the phase space distribution f(¢,z, p) at later time ¢ for a group of free
particles, i.e. H(x,p) = p*/2.

(ii) Sketch contour in the phase-space (z,p) where f(t,z,p) is 1/e of its maximum
(with e ~ 2.718), at time ¢ = 0 and at a significantly later time.
For definiteness take units where m = Axqg = Apg = 1 take Py = 3Apy.

(d) The phase space density at the initial time is

1 (z — Xo)? p?
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f(0,2,p) = (21)

(i) Determine the phase space distribution f(¢,z,p) at later time t for a group of
particles in a harmonic oscillator, i.e H(z,p) = (p* + wiz?)/2.

(ii) Sketch contour in the phase-space (z,p) where f(¢,z,p) is 1/e of its maximum
(with e ~ 2.718) at time ¢ = 0 and at several subsequent times.

For definiteness take units where m = Axg = Apg = 1. Take Xq = 3Ax and
mwo = 3Apg



