
Problem 1. 2d isotropic oscillator

Consider the 2d harmonic oscillator which is isotropic

H =
1

2

(
p21 + p22 + (ω0x1)

2 + (ω0x2)
2
)

(1)

This is an example of an integrable system, which means if the phase space consists of 2n
generalized coordinates there are 2n− 1 constants of the motion. We will find and interpret
these constants here.

(a) Show that

J3(r,p) =
1

2
(x1p2 − p1x2) (2)

generates rotations in the plane. Why is it constant in time?

(b) Determine the infinitesimal transformation generated by

J1(r,p) =
1

2ω0

(
1

2
p21 +

1

2
ω2
0x

2
1 −

p22
2
− 1

2
ω2
0x

2
2

)
. (3)

Show that the computed transformation leaves the Hamiltonian invariant, and that
this implies that J̇1 = {J1, H} = 0. Give a physical interpretation of this quantity.

(c) Use the Poisson theorem to deduce a third conserved quantity J2:

J2 =
1

2ω0

(
p1p2 + ω2

0x1x2
)

(4)

Determine the associated infinitesimal canonical transformation generated by this con-
servation law, and verify that it is a symmetry of the Hamiltonian.

(d) We have found three integrals of motion. Using similar manipulations to part (c), one
may show that

{Ji, Jj} = iεijkJk , (5)

and that (
H

2ω0

)2

= J2
1 + J2

2 + J2
3 (6)

Thus any random orbit is selected by choosing J1, J2, J3 to lie on the surface of a sphere.
Describe the motion of the orbit in each of the following limiting cases

(i) J1 = J2 = 0

(ii) J2 = J3 = 0

(iii) J1 = J3 = 0
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Problem 2. Phase-space and its characteristic flow

(a) If the number of particles per phase space volume (called the phase-space density)

f(t, q, p) =
dN

dnqdnp
(7)

is conserved, then the phase-space density obeys a conservation law

∂f

∂t
+
∂ (f q̇i)

∂qi
+
∂ (fṗi)

∂pi
= 0 . (8)

This equation of motion is analogous to a compressible fluid, where the density ρ(t,x)
satisfies the continuity equation

∂tρ+∇ · (ρv) = 0 , (9)

with v(t,x) the velocity of the fluid. Eq. (8) does not require Hamilton’s EOM, it just
says that once a particle always a particle, regardless of the EOM.

(i) Show that if Hamilton’s EOM are also satisfied and particle number is conserved,
the Liouville equation (also called the free-streaming Boltzmann equation)

df

dt
=
∂f

∂t
+
∂f

∂qi
q̇i +

∂f

∂pi
ṗi = 0 , (10)

is satisfied, and that this equation can be written as

∂tf + {f,H}p,q = 0 , (11)

(ii) Eq. (10) is analgous to an incompressible fluid, where ∇·v = 0, and thus we have
from Eq. (9)

∂tρ+ v · ∇ρ = 0 . (12)

What is the phase-space analog of the incompressibility constraint ∇ · v = 0?

(b) Eqs. (10) and (11) imply that f(t, q, p) that f is constant along the flow lines. Heuris-
tically, this means that we can find the solution to the equation Eq. (11) by tracing the
trajectories backward in time to the initial time t0 where the initial condition f0(q, p)
is specified. This is known as the method of characteristics, and we will develop this
method here.

(i) Show by direct substitution that for a free particle H = P 2/2m the solution to

∂f(t, Q, P )

∂t
+ {f,H}P,Q = 0 (13)

is

f(t, Q, P ) = f0(Q−
P

m
t, P ) . (14)

where f0(q, p) is the initial consition at time t = 0. The somewhat confusing
minus sign is just a reflection of the familiar fact that if I want to translate a
function F (x) forward by a distance ∆x = vt, I want the new function F (x− vt).
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(ii) Show more generally that the characteristic solution to Eq. (13) is

f(t, Q, P ) = f0(q(Q,P ; t, t0), p(Q,P ; t, t0)) , (15)

where f0(q, p) is the initial condition at time t = t0.

Here the characteristic solution is as follows – start at time t0 with q, p and flow
forward in time to time t were the coordinates are Q,P . This flow determines
the map (q, p) → Q(q, p; t, t0) and (q, p) → P (q, p; t, t0). The inverse map is
q(Q,P ; t, t0) and p(Q,P ; t, t0). Thus the characteristic solution can be written or
more loosely

f(t, Q, P ) = f0(q, p) . (16)

Hint: To prove Eq. (15), first show that q, p obey the EOM

∂tq(Q,P ; t, t0) =−
(
∂q

∂Q

∂H

∂P
− ∂q

∂P

∂H

∂Q

)
≡ −{q,H}P,Q (17)

∂tp(Q,P ; t, t0) =−
(
∂p

∂Q

∂H

∂P
− ∂p

∂P

∂H

∂Q

)
≡ −{p,H}P,Q (18)

and then prove Eq. (15).

(iii) Using the same notation, what are

∂t0q(Q,P ; t, t0) =? ∂t0p(Q,P ; t, t0) =? (19)

(c) The phase space density at the initial time t = 0 is

f(0, x, p) =
1

2π∆x0∆p0
exp

[
− x2

2∆x20
− (p− P0)

2

2∆p20

]
(20)

(i) Determine the phase space distribution f(t, x, p) at later time t for a group of free
particles, i.e. H(x, p) = p2/2.

(ii) Sketch contour in the phase-space (x, p) where f(t, x, p) is 1/e of its maximum
(with e ' 2.718), at time t = 0 and at a significantly later time.

For definiteness take units where m = ∆x0 = ∆p0 = 1 take P0 = 3∆p0.

(d) The phase space density at the initial time is

f(0, x, p) =
1

2π∆x0∆p0
exp

[
−(x−X0)

2

2∆x20
− p2

2∆p20

]
(21)

(i) Determine the phase space distribution f(t, x, p) at later time t for a group of
particles in a harmonic oscillator, i.e H(x, p) = (p2 + ω2

0x
2)/2.

(ii) Sketch contour in the phase-space (x, p) where f(t, x, p) is 1/e of its maximum
(with e ' 2.718) at time t = 0 and at several subsequent times.

For definiteness take units where m = ∆x0 = ∆p0 = 1. Take X0 = 3∆x0 and
mω0 = 3∆p0
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