
Problem 1. An incline plane

A pendulum initially swings with amplitude A (not necessarily small) on an incline, of
inclination angle α with α � 1. Determine how the amplitude depends on the inclination
angle as it is slowly increased to α ∼ 1.

You should find Afinal ∝ 1
(sinα)1/4

for α ∼ 1.

Hint: Argue that the amplitude A will be small by the time α is large.
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Problem 2. Short problems

Answer briefly. No more than a few lines

(a) Derive the canonical transformation rules (q, p)→ (Q,P ) for type F2(q, P, t)

p =
∂F2

∂q
(1)

Q =
∂F2

∂P
(2)

H ′ =H +
∂F2

∂t
(3)

from the action principle. (This is essentially just reproducing what was done in
lecture).

(b) It is well known that replacing the Lagrangian by

L′(q, q̇, t) = L(q, q̇, t) +
df

dt
(q, t) (4)

does not change the equations of motion. Show that this change in the Lagrangian
amounts to a canonical transformation in the corresponding Hamiltonian setup, and
find the generating function of type F2 for this transformation.

(c) Consider the Hamiltonian for a particle in a electromagnetic field

H =
(p− eA)2

2m
+ eϕ(t, r) (5)

Under a gauge transformation the electromagnetic potentials A, ϕ change, but the
fields E and B do not. The change in the potentials is specified a function Λ(t, r),
with new potentials

A→ A′(t, r) =A +∇Λ(t, r) (6)

ϕ→ ϕ′(t, r) =ϕ− ∂tΛ(t, r) (7)

Show that this change in the Hamiltonian can be written as a canonical transformation,
and find the corresponding F2 generating function.

(d) (Optional but recommended) Spell out the relation between parts (c) and parts (b),
by examining the Lagrangian for a particle in an electromagnetic field

L =
1

2
mṙ2 − eϕ(t, r) +

e

c
ṙ ·A(t, r) (8)

(e) What is the transformation (r,p)→ (R,P ) generated by F2(r,P ) = ar ·P . Describe
this transformation qualitatively.
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(f) The Hamiltonian of a charged particle of charge q in the electrostatic potential of an
electric dipole with dipole moment d0 directed along the z axis is

H =
p2

2m
+ κ

ẑ · r̂
r2

(9)

where κ = qd0/(4πε0) in SI units.

Use the previous item with a = (1 + ε) to show that said particle has

p · r − 2Et = const (10)
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Problem 3. Discretizing canonical transforms (Roceck)

Many physical systems are described by Hamiltonians which give rise to equations of motion
that cannot be solved analytically, but must be discretized and solved numerically. Dis-
cretizations which preserve the symmetries of the continuum theory are especially effective
when numerically integrating the equations of motion for long times. In this problem, we
will explore some of the techniques available to describe such systems.

Consider a one-dimensional classical system whose s finite time evolution is described by a
canonical transformation. Specifically, let

x0 ≡ x(0) , x ≡ x(t) , p0 ≡ p(0) , p ≡ p(t)

and consider a generating function F2(x0, p, t). Then the evolution from (x0, p0) to (x, p) is
obtained by solving the equations

p0 =
∂F2

∂x0

, x =
∂F2

∂p
(11)

We are thinking of t as being small but finite.

(a) (i) Show that this evolution preserves volume in phase space (that is, prove Liouville’s
theorem for this case).

(ii) Next show that for
F2(x0, p, t) = x0p+ tH(x0, p)

as t→ 0, the evolution equations reduce to Hamilton’s equations of motion.

(b) For a Hamiltonian of the form p2

2m
+U(x), show that the naive discretization of Newton’s

equations of motion (for δt small but finite)

p = p0 −
∂U(x0)

∂x0

t , x = x0 +
p0

m
t (12)

does NOT preserve volume in phase space. For a harmonic oscillator, will the volume
shrink or grow? What does this say about the long time behavior of this approxima-
tion? Estimate the number of iterations of this map before the error is of order one,
in terms of the mass m of the particle, the spring constant k, and the finite interval t.

(c) What is the analogous discretization using the canonical transformations as outlined in
a.ii? Work out the equations corresponding to (2) in part (c). Why is this guaranteed
to preserve volume in phase space?

Recall that under a time dependent canonical map from (q1, p1) → (Q,P ) generator
F2(q1, P, t) we have

p1 =
∂F2

∂q
(13)

Q =
∂F2

∂P
(14)

H ′(Q,P ) =H(q1, p1) +
∂F2(q1, P, t)

∂t
. (15)
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This last part studies the implications of the last equation relating H ′ and H for discretiza-
tion, and its meaning more generally.

We are describing a canonical map from (x0, p0)→ (x, p). The Hamiltonian for (x, p) is
p2/2m+U(x) so that the exact time evolution of the coordinates at time t is the differential
equation we are trying to solve

ẋ =
p

m
(16)

ṗ =− ∂U(x)

∂x
(17)

These equations determine x+ = x(t+δt) and p+ = p(t+δt) for some infinitessimal δt. x+, p+

are not the same as taking (x0, p0) and applying the map generated by F2(x0, p+, t + δt).
However, if we evolve x0, p0 with a new Hamiltonian H0

ẋ0 =
∂H0(x0, p0)

∂p0

(18)

ṗ0 =− ∂H0(x0, p0)

∂x0

(19)

by infinitessimal δt to x0+ = x0(δt) = x0 + δx0 and p0+ = p0(δt) = p0 + δp0, and then apply
the map generated by F2(x0+, p+, t + δt) to x0+, p0+ we will exactly obtain (x+, p+). This
is the meaning of a time dependent canonical transform, we can view the evolution either
with x0, p0 or x, p. Ideally the time evolutions of x0, p0 will be approximately zero if the map
F2(x0, P, t) is a good approximation for the onshell action (principal function), S2(t, q, t0, P ).

(d) (Optional but highly receommended) Compute H0 using by two methods: (i) by using
an appropriate version of Eq. (13), and (ii) by determining what H0 needs to be so
that the map generated by F2(x0+, p+, t+ δt), maps (x0+, p0+) to (x+, p+)

You should find by both methods that

H0(q0, p0) ≈ t
∂U(q0)

∂q

p0

m
+O(t2) (20)

Here H0 is non-zero to first order in t, and is therefore small. For a second order
symplectic integrator one would find H0 = 0 +O(t2). See Ruth, IEEE Transactions on
Nuclear Science (posted online).
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