
Figure 1: A number of figures for the problems on springs

Problem 1. Group velocity of a chain from a continuum theory

(a) Determine the frequencies of the eigen-vibrations of a system of 2N particles, alternat-
ing with masses m and M , connected by springs of elastic constant γ and separation
a. This is similar to the problem shown in Fig. 33d above, but we will we assume
periodic boundary conditions, qN(t) = q−N(t)

Hint: Try an ansatz

qj =ξ1e
i(kxj−ωt) (1)

qj+1 =ξ2e
i(kxj+1−ωt) (2)

and find a two-by-two eigen value equation for (ξ1, ξ2). This gives two eigen frequencies
ω±(k) for each value of k.

(b) Determine the dispersion curve ω±(k) at small k, ka� 1, to order k3 and sketch ω+(k)
and ω−(k) at small k on the same graph. Determine the group velocity to order k2.

(c) When the wavelength of the waves of part (a) is very long, the microscopic details of
the discrete model in (a), are unimportant. A continuum theory can reproduce the
results of the model in (a), provided the “low energy” constants of the continuum
theory are adjusted to match certain physical properties.

Consider the action from a previous problem

S =

∫
dt dx

1

2
µ(∂tq)

2 − T

2
(∂xq)

2 − α(∂2xq)
2 (3)

From the equation of motion you found previously, determine the dispersion curve ω(k)
associated with this action. What should the values of the “low-energy constants”, µ,
T and α be set to if the continuum action in Eq. (3), is to reproduce the dispersion
curve of the discrete theory of parts (a) and (b) at small k for the “plus” modes (i.e.
the modes with eigenfrequencies ω+(k) in the discrete theory) and how should they be
tuned to reproduce the “minus” modes.
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Problem 2. Split personality

(a) A general solution to the wave equation is

y(t, x) =

∫ ∞
−∞

dk

2π

[
A(k)ei(kx−ω(k)t) +B(k)ei(kx+ω(k)t)

]
(4)

where ω(k) is a positive symmetric function of k, ω(−k) = ω(k). For a real wave
B(−k) must be equal to A∗(k). By change of variables k → −k in the second integral
the solution can be written1

y(t, x) =

∫ ∞
−∞

dk

2π

[
A(k)ei(kx−ω(k)t) + A∗(k)e−i(kx−ω(k)t)

]
(5)

The wave equation is a second order differential equation. Thus in order to specify
the problem, we need to specify the initial amplitude y(0, x) and the initial velocity
∂ty(0, x) everywhere on the string. How is A(k) determined by y(0, x) and ∂ty(0, x)?

(b) Here we want to describe a wave-packet which moves to the right. The amplitude at
t = 0 is

y(0, x) = Re[g(x)eik0x] , (6)

with

g(x) =
1√

2πa2
exp(−x2/(2a2)) , (7)

and k0a� 1. Argue that the appropriate initial condition for a right moving wave is

∂ty ' vφ ∂xy (8)

where vφ(k0) = ω(k0)/k0 is the phase velocity of the wave, by (approximately) com-
puting A(k) in this case. What would A(k) be if ∂ty(0, x) = 0? Sketch |A(k)|2 in both
cases.

In the second case ∂ty = 0, one can either calculate the result directly or use the
superposition principle.

(c) Repeat the argument (given in class for complex waves) that if the solution for a wave
is

y(t, x) =

∫
dk

2π

[
A(k)ei(kx−ω(k)t) + A∗(k)e−i(kx−ω(k)t)

]
, (9)

then, provided the wave form is initialized as in (8), then

y(t, x) ' cos(k0x− ω0t) g(x− Ut) . (10)

Here U = dω(k0)/dk is the group velocity and ω0 = ω(k0). The applet by Michael
Fowler is a helpful visualization.

(d) Determine the wave form at late times if ∂ty(0, x) = 0. Hint: use the superposition
principle.

1Having had this discussion with the grad-students in the past ...
∫∞
−∞ dkf(k) =

∫ −∞
+∞ −dk̃f(−k̃) =∫∞

−∞ dk̃f(−k̃), and then since k̃ is a dummy integration variable, we now just call it k to arrive at the result
Eq. (5)

2

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/wavepacket/wavepacket.html
http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/wavepacket/wavepacket.html

