
Problem 1. The precession of Mercury due to Jupiter

Recall that the trajectory of Mercury r(φ) is an ellipse with the sun at one focus as shown
below. The perihelion (defined as the distance of closest approach) is rotated relative to the
x-axis by an angle θ. The lattice rectum of Merucury is denoted RM and is related to the
angular momentum ` of the system (as discussed in class) but independent of the energy at
fixed `. The eccentricity of Mercury is small, ε = 0.2, although it is the most eccentric of
the Sun’s planets.
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Due to perturbations from the other planets, the angle of the perihelion θ changes (or
precesses) as function of time. The precession rate is very small. The contribution of Jupiter
to the precession rate is of order 150 arcsec/century, or (since the orbital period of Mercury
is 88 days) approximately 1.78× 10−6 rad/turn.

The goal of this problem is to estimate Jupiter’s contribution to the precession rate1.
Specifically, we will model Jupiter as a thin ring of mass MJ at the orbital radius of Jupiter
RJ , and compute how this ring perturbs Mercury’s orbit and causes the perihelion of Mercury
to precess. Jupiter’s orbital radius is significantly larger than Mercury’s, RJ ' 10RM .

(a) Show that for RJ � RM the Lagrangian of Mercury interacting with the sun of mass
M�, and a ring of mass MJ and radius RJ is approximately

L ' 1

2
mṙ2 +

1

2
mr2φ̇2 +

GmM�

r
+ αr2 , (1)

and show the coefficient α = GmMJ/(4R
3
J).

Hint: Let the origin be at the center of the ring. Let r be the vector from the center of
the ring to a point of interest (i.e. Mercury) close to the center. For simplicity assume

1Famously, general relativity also perturbs the classical orbit and contributes 43 arcsecs/century to
the total precession rate. This “anomalous” precession of Mercury was measured in the nineteenth cen-
tury by le Verrier and finally explained by Einstein in 1915. The total precession rate is approximately
550 arcsec/century
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that r lies in the xy plane. Then we want to integrate the Newton gravitational poten-
tial dΦ = −GdMJ/|r −RJ | over the mass of the ring to determine the gravitational
potential due to the ring at point r.

To this end, let RJ is a vector from the center to a point on the ring. Show that for
r � RJ

1

|r −RJ |
' 1

RJ

(
1 +

r

RJ

cos(φ) +
r2

2R2
J

(
3 cos2 φ− 1

))
(2)

where cosφ is the angle between r and RJ , and then integrate over φ.

(b) The orbit of mercury is characterized by its energy E and its angular momentum `.
Let us introduce some dimensionless variables to simplify the notation.

Since the unit of mass, time, and space are arbitrary we can (effectively) set three
parameters to unity. Let us choose these three parameters to be `, m, k ≡ GM�m.
Then all other scales are measured in these units. Thus, for instance, the only unit of
length that can be constructed out of these three quantities can is

R0 =
`2

Gm2M�
. (3)

In class we showed that the lattice rectum of the unperturbed ellipse is RM = `2/mk,
and thus the unperturbed lattice rectum RM = 1R0 is unity in these units. All
distances will be measured in terms of R0.

(i) What are the units of time T0 and energy E0 with this set of units?

(ii) Introduce a dimensionless radius r ≡ r/R0 and other suitable dimensionless vari-
ables, t ≡ t/T0 and α ≡ α/(E0/R

2
0). Show that a dimensionless Lagrangian for

the system is

L =
1

2

(
dr

dt

)2

+
1

2
r2

(
dφ

dt

)2

+
1

r
+ α r2 , L =

L

E0

, (4)

where the dimensionless constant α is of order

α ≡ MJ

4M�

(
RM

RJ

)3

' 0.1× 10−6 . (5)

Note that α has units energy per length squared, which is why its dimensionless
version is scaled by E0/R

2
0.

The dimensional analysis step amounts to setting ` = m = GM�m = 1 every-
where in the original Lagrangian. We actually gained a little something by this
analysis, i.e. without doing any computation we learned that the effect of the
perturbing ring is of order one part in 107.

To lighten the notation, stop underlining the variables in what follows.
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(c) Determine the Hamiltonian of the dimensionless system, and use the Hamiltonian to
determine the equations of motion. You should find

ṙ =pr , (6)

φ̇ =
pφ
r2
, (7)

ṗr =
p2
φ

r3
− 1

r2
+ 2αr , (8)

ṗφ =0 (9)

You can set pφ = ` = 1 to unity only after find the equations of motion. By rescaling
our units we are setting the initial value for pφ, i.e. `, to 1, and then the equation of
motion guarantee that it remains unity at all subsequent times.

For α = 0. The minimum of the effective potential is at r = 1 and its minimum value is
Emin = −1/2. Recall from class that the eccentricity of the ellipse for α = 0 in dimensionless
units is

e =
√

1 + E/|Emin| (10)

Thus, for the real “Mercurial” orbit the energy difference ε ≡ E − Emin = e2|Emin| '
0.04 |Emin| is small, and the orbit is nearly circular up to small oscillations of around the
minimum of the effective potential. We will use this almost circular approximation for α 6= 0.

(d) Determine the radius and period for the circular orbit to first order in α. I find
r ' 1 + 2α

(e) Determine the period of radial oscillations for slight disturbances from this circular
orbit to first order in α. I find

τM ' 2π(1 + 7α) (11)

(f) Show that the angle of perihelion of the ellipse θ will advance by an angle ∆θ = 6πα
(see picture above), every time the particle reaches the distance of closest approach.

Restoring units we find

∆θ = 6πα =
3π

2

MJ

M�

(
RM

RJ

)3

' 1.88× 10−6 rad per turn , (12)

This should be compared to the experimental result of 1.78× 10−6rad/turn.
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Problem 2. A scattering cross section

A particle of mass µ moves in the repulsive 1/r2 potential

U(r) =
h

r2
, h > 0 .

(a) Find equation for a generic trajectory r(φ) characterized with energy E and angular
momentum ` 6= 0. Follow the convention that the direction φ = 0 points to the
pericenter (point of closest approach).

(b) Find the time dependence on this trajectory, taking the time t = 0 at the pericenter.

(c) Find the differential scattering cross section dσ(θ)
dΩ

for a particle with energy E in this
potential.
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Problem 3. (Goldstein) A hoop on a cylinder

(a) First consider a small block of mass m on a cylinder of radius R on earth. If the block
starts from rest on top of the cylinder, determine at what angle θ the block falls off
the cylinder using the Lagrangian formalism to impose the constraint r = R.

the coordinates are r, ✓

(b) Now consider a uniform hoop of mass m and radius r0 rolls without slipping on a fixed
cylinder of radius R as shown in the figure. The only external force is that of gravity.
If the cylinder starts rolling from rest on top of the bigger cylinder, use the method
of Lagrange multipliers to find the point at which the hoop falls off the cylinder. You
should find θ = 60o

(i) Setup some coordinates. I took those based on the picture below, but their are
better choices. Determine the relaxation between the X and Y coordinates of a
point on the rim of the hoop in terms of r, θ, ψ.
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(ii) Starting with the general expression

T =
1

2

∫
dmv2 (13)

show that the kinetic energy is of the hoop is

T =
1

2
mr2θ̇2 +

1

2
mṙ2 +

1

2
mr2

0(θ̇ + ψ̇)2 (14)

(iii) Determine a relation between dθ and dψ if the hoop rolls without slipping.

(iv) Introducing a Lagrange multiplier for r to enforce the constraint, and find the
angle where the hoop falls off the cylinder. You should find θfall−off = 60o
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Problem 4. Constraints in the Hamiltonian Formalism

If the canonical variables pi, qi, t (with i = 1 . . . N) are not all independent but are related
by auxiliary conditions of the form

ψk(pi, qi, t) = 0 (15)

(with k = 1 . . .m) determine the modified Hamilton equations of motion by varying the
appropriate action.
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Problem 5. The first order formalism and the transition to the
Hamiltonian

This problem uses the notion of Lagrange multipliers and Legendre transforms to under-
stand the action in the Hamiltonian formalism. Previously we said that the action in the
Hamiltonian formalism is

S[q, p] =

∫
dt

(
p
dq

dt
−H(p, q)

)
. (16)

We showed that extremizing this action gives Hamilton’s equations of motion and that these
equations are equivalent to the Euler-Lagrange equations. We did not, however, derive S[q, p]
directly from the action of the Lagrangian, S[q]. We will do this in this problem.

The action principle says that the action is

S[q] =

∫
dtL(q, q̇) (17)

and the system will follow the trajectory q(t) which extremizes this action. Using a Lagrange
multiplier called p(t) (for reasons discussed below), we may separately vary the velocity v(t)
and q̇ by defining

Ŝ[q(t), v(t), p(t)] ≡
∫
dt L̂(q, q̇, v, p) L̂ ≡ L(q, v)− p(v − q̇) . (18)

and require that δŜ = 0 for independent variations of q, v, p. The Lagrange multiplier
enforces that v = q̇ at the level of the equations of motion rather than the action. This
“theorist-gone-wild” procedure is known as the “first order formalism”, and has been found
to be useful in analyzing various rich theories (such as gravity) which have complicated
constraints.

(a) Consider the Lagrangian

L =
1

2
mq̇2 − U(q) (19)

Show that the equations motion following from δŜ[q, v, p] = 0, reproduce Newton’s
laws. Does the Lagrange multiplier have an appropriate name? Explain.

(b) One way to to extremize Ŝ is to first extremize Ŝ with respect to p, v with q fixed,
leaving a reduced action Sred[q] to be extremized later. Argue that this reduced action
is the Lagrangian formulation S[q] in Eq. (17).

(c) Now extremize Ŝ with respect to v first with q and p fixed, leaving a reduced action
Sred[q, p] to be extremized later, and argue that this reduced action is the Hamiltonian
formulation S[q, p] in Eq. (16).
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