
Problem 1. (Milton, de Raad, Schwinger) Virial theorem from
Noether logic

The virial theorem says that for the periodic motion of a particle the time averaged kinetic
energy is related to an average of the potential energy:

2T = r · ∂U(r)

∂r
. (1)

For simplicity we will limit ourselves to the single particle Lagrangian

L =
1

2
mṙ2 − U(r) , (2)

but when many particles are involved, the theorem generalizes straightforwardly .

2T =
∑

a

ra ·
∂U(r)

∂ra
. (3)

Here we will derive this useful result using Noether logic1.
Recall that we say that the trajectory is called “onshell” if it satisfies the equation of

motion, and, when necessary, notate this by placing a bar underneath the coordinates r(t)

(a) For a closed orbit of potential U(r) ∝ rβ what is the statement of the virial theorem.
What is the statement of the theorem for a harmonic oscillator U(r) ∝ r2 and the
gravitational potential U(r) ∝ r−1.

(b) Consider a quantum mechanical particle in one dimension in an energy eigenstate
H |ψn(x)〉 = En |ψn〉 (an eigenstate is analogous to the classical periodic trajectory).
Show that for this eigenstate we have

〈2T 〉 =

〈
x
∂U(x)

∂x

〉
(4)

by considering 〈ψn| [xp,H] |ψn〉. (Incidentally we will see later in the course that the
generator G(x, p) = xp generates infinitesimal rescalings in the classical theory. That
it why it is natural, see below, to consider the commutator [G,H] in the quantum
mechanical formulation.)

(c) Now return to classical mechanics. Consider a specific variation of the trajectory
consisting of an infinitesimal rescaling of the coordinate r

r → (1 + ε)r (5)

What is the change of the onshell action S[r] for this specific variation over one com-
plete period of a periodic classical trajectory r?

(d) What is the change in the action δS[r, δr] for the specific variation in Eq. (5). Do not
assume that r is onshell.

(e) Using (c) and (d) prove the theorem in Eq. (1)
1It is not exactly the Noether theorem, since there is no conserved charge and no symmetry. But the

derivation is essentially the same as is used to derive Noether theorem.
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Problem 2. Foucault Pendulum and the Coriolis Effect (MIT-
OCW)

(a) We showed in class using the Newtonian formalism that, in a rotating frame of refer-
ence, the equation of motion for a particle takes the form

mar = Feff , (6)

where
Feff = F − 2m (ω × vr)−m(ω × (ω × r)) . (7)

Here vr = (dra/dt) ea(t) is the velocity in the rotating frame, and ea(t) is the rotating
basis of the frame. Derive this equation of motion from the Lagrangian formalism,
where the Lagrangian in a fixed inertial frame is

L =
1

2
mv2 − U(r) (8)

with v = dr/dt.

Now consider a pendulum consisting of a long massless rod of length ` attached to a mass m.
The pendulum is hung in a tower that is at latitude λ on the earth’s surface2, so it is natural
to describe its motion with coordinates fixed to the rotating Earth. Let ω (i.e. once per day)
be the Earth’s angular velocity. Use either the (x, y, z) or (r, θ, φ) coordinates shown in the
figure. Here z is perpendicular to the Earth’s surface and y is tangent to a circle of constant
longitude that passes through the north pole, and x therefore points east. The radius of the
earth is Re
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2.  Foucault Pendulum and the Coriolis E↵ect [13 points] 
Consider a pendulum consisting of a long massless rod of length ` attached to a mass 
m. The pendulum is hung in a tower that is at latitude � on the earth’s surface, so it 
is natural to describe its motion with coordinates fixed to the rotating Earth. Let ! 
be the Earth’s angular velocity. Use the spherical coordinates (r, ✓, �) shown in the 
figure to investigate the Coriolis force. Here ẑ is perpendicular to the Earth’s surface 
and ŷ is tangent to a circle of constant longitude that passes through the north pole. 

a) [9 points] The velocity is given in terms of ~v in the 
rotating frame by ~v + !~ ⇥ (Reẑ + ~r), so 

m⇥ ⇤2 
L = ~v + ~! ⇥ (~r + Reẑ) � V , 

2

with Re the radius of the earth, and V the potential en-
ergy due to gravity near the earth’s surface (we neglect 
air resistance). Writing everything in terms of the vari-
ables ✓ and �, and the fixed angle �, derive the equations 
of motion for the pendulum. From the start you should 
only keep terms up to first order in !. You can also drop 
the term / !Re since it is a total time derivative. 
b) [4 points] Since ` is large, consider the small angle 
approximation for ✓ and simplify your equations of mo-
tion from a). Demonstrate that the pendulum undergoes 

˙precession with � = ! sin �. 

3.  Angular Velocity with Euler Angles [9 points] 

(a) [2 points] Show that the components of angular velocity along the body axes 
(x 0 , y 0 , z 0 ) are given in terms of Euler angles by 

!x0 = � ˙ sin ✓ sin   + ✓̇ cos  , 
˙!y0 = � sin ✓ cos   � ✓̇ sin  , 
˙ ˙!z0 = � cos ✓ +  . 

This is done in the text! I am asking you to go through the steps to ensure that 
you understand the calculation. 

(b) [4 points] Show that the components of angular velocity along the fixed space 
set of axes, the inertial frame (x, y, z), are given in terms of the Euler angles by 

!x = ✓̇ cos � +  ̇ sin ✓ sin � , 
!y = ✓̇ sin � �  ̇ sin ✓ cos � , 
!z =  ̇ cos ✓ + �̇ . 

This problem is Goldstein Ch.4#14. You may use results given in Goldstein. 
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20o latitude is the equator, 90o latitude is the north pole
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(b) Determine the Lagrangian of the Pendulum. From the start you may keep terms up
to first order in ω, and of course you may neglect total time derivatives to simplify the
analysis. Derive the Lagrangian for the pendulum small oscillations. I find

L =
1

2
m`2

[
(θ̇)2 + θ2φ̇2

]
−mω`2φ̇ sin(λ)θ2 −mg`θ

2

2
(9)

though in retrospect it may have been easier to use the xy coordinate system.

(c) Demonstrate that the pendulum undergoes precession with a rate φ̇ = ω sinλ, by
exactly solving the equations of motion for the small oscillations. Hint: it may be
helpful to change variables back to Cartesian coordinates

x ≡`θ sin(φ) (10)

y ≡`θ cos(φ) (11)

before determining the equations of motion. The resulting equations can be solved
exactly, by introducing z(t) = x+ iy, and solving for z. Then the x and y coordinates
may be recovered by taking the real and imaginary parts. Describe carefully which
way the pendulum precesses.
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Problem 3. Preliminaries

Answer as briefly as possible!

(a) Given a tensor I = Iabea⊗eb in the rotating basis and in the fixed basis3 I = Iabea⊗eb
(here ea = Rabeb), show that the components are related via

Iab = RacRbd Icd . (12)

Express this transformation rule with matrices.

(b) Show that
w × v = v̂ ·w = v · ŵ (13)

where (for example) v̂ = v̂ab ea ⊗ eb denotes the antisymmetric tensor v̂ab = εabcv
c

associated with the vector v. Express these two alternate forms of the cross product
using matrices.

(c) Show that ωac = (R−1Ṙ)ac

(d) Determine the projection of ~ω on to the lab frame axes e1, e2, e3. (You may use
either algebraic means, computer algebraic means, or use the appropriate picture from
lecture, or all three means.) You should find



ωX
ωY
ωZ


 =



θ̇ cos(φ) + ψ̇ sin(θ) sin(φ)

θ̇ sin(φ)− ψ̇ sin(θ) cos(φ)

ψ̇ cos(θ) + φ̇


 (14)

REPRESENTING RIGID OBJECT MOTION
The same geometric argument for arm movement can be applied
to moving rigid objects, which have additional rotational degrees
of freedom around an axis in space (Fig. 1). In the following, we
derive a general tuning rule for rigid motion, discuss its basic
properties, and then contrast the results with concrete models of
visual receptive fields.

Description of rigid object motion
Arbitrary instantaneous motion of a rigid object can always be
described by a rotation plus a translation (Fig. 4), but given the
same physical motion, this description is ambiguous up to an
arbitrary parallel shift of the rotation axis. For example, transla-
tional velocity can always be aligned instantaneously with the
angular velocity to obtain a screw motion by passing the rotation
axis through the point of zero velocity in a perpendicular plane
(Fig. 4).

This ambiguity disappears when the rotation axis is always
required to pass through the same reference center in the object,
say, the center of mass. We assume that the reference center has
been chosen so that a rigid motion can be described uniquely by
a translational velocity and an angular velocity. We return to this
topic later.

The static position and orientation of a rigid object can be
specified by six independent parameters:

! x, y, z, !1 , !2 , !3", (24)

where x, y, z describe the position of the reference center of the
object with respect to a coordinate system fixed to the world, and
!1 , !2 , !3 are three angular variables that represent the object’s
orientation. The translational velocity of the object is:

v " ! ẋ , ẏ , ż ". (25)

The angular velocity ! # (#x , #y , #z)T in world coordinates is
always linearly related to the time derivatives of the orientation
variables "̇ # (!̇1 , !̇2 ,!̇3)T:

! " M"̇, (26)

where M is an invertible 3 $ 3 matrix that depends only on the
orientation (!1 , !2 , !3). For example, when Euler angles are used
to describe orientation (Fig. 5), we have:

!!1 , !2 , !3" " !!, $, %", (27)

and

M " ! cos $ 0 sin ! sin $
sin $ 0 % sin ! cos $

0 1 cos !
" , (28)

which is invertible as long as det M # sin ! & 0 (Goldstein, 1980).
Only the abstract linear relation in Equation 26 is needed in the

next section. The actual choice of (!1 , !2 , !3 ) is unimportant
here. Because the time derivatives of different sets of variables
are linearly related by a Jacobian matrix, Equation 26 always
holds regardless of the exact choice of the parameterization of
orientation (see also Appendix A on independence of the coor-
dinate system).

Tuning rule for rigid motion
Consider neuronal activity associated with motion of a rigid
three-dimensional object. Assume that the mean firing rate of a
neuron relative to baseline, with a possible time delay, is proportional
to the time derivative of a smooth function of the position and
orientation of the object in three-dimensional space. In other words:

f " f0 &
d
dt '! x, y, z, !1 , !2 , !3", (29)

where f is the firing rate, f0 is the baseline rate, and ' is an
arbitrary function of object position (x, y, z) and orientation (!1 ,
!2 , !3), as described in the preceding section. This equation is
analogous to Equation 1.

The exact form of function ' need not be specified here. It may
depend on both the receptive field properties of the cell and the
visual appearance of the object and its surroundings. This formu-
lation is quite general. For example, all the visual cues of the
object illustrated in Figure 1 are functions of the position and
orientation of the object that completely determine how light is
reflected from various surfaces, whether diffuse (uniform scatter-
ing in all directions) or specular (energy concentrated around the

Figure 4. Arbitrary motion of a rigid object can always be decomposed
instantaneously into a translation and a rotation, allowing arbitrary par-
allel shift of the rotation axis. The two examples shown here describe
identical physical motion. Parallel shift of rotation axis affects the trans-
lation velocity but not the angular velocity !.

Figure 5. Euler angles (!, $, %) describe an arbitrary orientation of a
rigid object with axes (X(, Y(, Z() with respect to a standard orientation
with axes (X, Y, Z).
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3Often I will write ea ⊗ eb as simply eaeb with the ⊗ implied. Then I · v takes the dot product with the
second slot I · v = Iabv

b ea, while v · I takes the dot product with the first, vaIabeb.
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Problem 4. A Rolling Cone (Adapted from Goldstein Ch.5 #17)

A uniform right circular cone of height h, half-angle α, and density ρ rolls on its side without
slipping on a uniform horizontal plane. It returns to its original position in a time τ .

(a) Find the moment of inertia tensor for the body (or principal) axes centered on the tip.
I find

I0 =
3

5
Mh2




1
4

tan2 α + 1
1
4

tan2 α + 1
1
2

tan2 α


 (15)

(b) The cone is turning around the Z axis in a counterclockwise fashion as seen from above.
Consider the infinitesimal rotation at t = 0 (see figure) that the cone experiences – the
displacement of a point r on the cone’s body is

r → r + δθ × r , (16)

where δθ points along the Y axis. Describe qualitatively why Eq. (16) (with the
specified direction of ω) is what we mean by a rolling cone. Argue in particular that
ωz = 0 and write down the components of ω(t) in the lab frame.

(c) Determine the Euler angles describing the cone as a function of time. Take the Z axis
to point along the axle of the cone. Interpret φ̇ and the relation between ψ̇ and φ̇.

(d) Find the kinetic energy of the rolling cone. I find

T = Mh2

(
2π

τ

)2 [
3

40
(1 + 5 cos2 α)

]
(17)

(e) (Optional.) Write down the components of the L(t) in the lab frame. (You may wish
to check your results by computing T = 1

2
ω ·L)

(f) (Optional.) There are two ways to compute the kinetic energy. The first way uses the
expression

T =
1

2
ω · Itip · ω . (18)
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where Itip is the moment of inertia around the tip. The second way uses the moment
of inertia of the center of masss Icm

T =
1

2
ω · Icm · ω +

1

2
Mv2

cm . (19)

Show that these are equivalent to each other provided Icm and Itip are related by the
parallel axis theorem.
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