
Problem 1. Nutation of a Heavy Symmetric Top

Consider a heavy symmetric top with one end point fixed.

(a) Write down the Lagrangian from class. Carry out Routh’s procedure explicity by
Legendre transforming with respect to the the conserved momenta pψ and pφ. Write
down −R which serves as effective Lagrangian Leff for θ. Show that θ obeys the
equation of motion following from this effective Lagrangiang

Iθ̈ = −∂Ueff

∂θ
, (1)

where

Ueff = mg` cos θ +
(pφ − pψ cos θ)2

2I1 sin2 θ
. (2)

Also show that

φ̇ =
pφ − pψ cos θ

I1 sin2(θ)
. (3)

(b) In class we analyzed the limit when gravitational torque is small to the rotational
kinetic energy, mg`/(p2

ψ/I1) � 1. Take pφ/pψ = r with 0 < r < 1. Within this
approximation (known as the fast top approximation), if the energy E is adjusted to
the minimum of the effective potential, the tip of the top will slowly precess with

θ̇ = 0 , and φ̇ =
mg`

pψ
. (4)

This is is shown in Fig. 1(d) which shows the trajectory of the tip of the top on the
sphere.

Now if the energy of the system is slightly larger than the minimum of Ueff , describe
qualitatively the motion in θ and φ. For what range in E do the first (a) and second
(b) figures describe the top’s motion? Explain. Work in the fast top approximation
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˙Figure 2.8: � > 0
˙Figure 2.9: � has both

signs

Figure 2.10: at ✓2 we
˙ ˙have � = 0, ✓ = 0

Figure 2.11: No nu-
tation

˙ ˙with � > 0, whereas in Fig. 2.9 the precession is also in the backward direction, � < 0, for
˙part of the range of motion. In Fig. 2.10 the top has � = 0 at ✓2, before falling back down

˙in the potential and gaining � > 0 again. This figure also captures the case where we let go
˙ ˙of a top at ✓ = ✓2 � 0 that initially has  > 0 but � = 0. Finally in Fig. 2.11 we have the

situation where there is no nutation oscillation because the two angles coincide, ✓1 = ✓2.
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Figure 1: Motion of the tip of the heavy symmetric top

(c) Using the fast top approximation outlined in (b), compute the period of oscilations for
a given energy E, and determine the precession rate φ̇(t), and angle θ(t), as a function
of time. What is the average precession rate?
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Problem 2. Torque on a box

Consider a solid box of mass m and dimension L,L, 2L (see figure).

(a) Compute all components of the moment of inertia tensor around center of mass.

(b) The box is rotated with constant angular frequency ω around its diagonal. At t = 0
the box is oriented so that its principal axes e1, e2, e3 are aligned with laboratory
x̂, ŷ, ẑ as shown in the figure. Compute the components of angular momentum as a
function of time in the body basis and in the lab basis. For the lab basis you use the
fixed basis vectors e1, e2, e3 shown in the figure, which differ by a constant rotation
from x̂, ŷ, ẑ.

e1 =
1√
2

(x̂ + ŷ) (5)

e3 =
1√
6

(x̂ + ŷ + 2ẑ) (6)

e2 =e3 × e1 (7)

(c) Compute the components of the torque required to maintain the box’s rotational mo-
tion working with the rotating basis. Compute the components of the torque working
with the fixed basis.
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(d) (Optional) Use the Lagrangian framework to compute the required torques in the body
frame.

Problem 3. Oscillations of a bar

A uniform bar of length ` and mass m lies in the xy plane and is attatched by two equal
springs of equilibrium length b and force constant k as shown in the figure below. (Gravity
is to be ignored, it points in the z direction). The points A and B are held fixed (and are
separated by a distance `+2b sin θ0 see below), but the bar is otherwise free to translate and
rotate in the xy plane. Determine the normal modes of small oscillations in the plane and
the associated frequencies.

A B

✓0 ✓0
m, `

You should find the oscillation frequencies

ω2

k/m
= 0, 2 cos θ2

0, 4 + 2 cos(2θ0) (8)

Give an interpretation of the zero mode.
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