
Problem 1. (Goldstein) A molecule with a right triangle

The equilibrium configuration of a molecule consists of three identical atoms of mass m at
the vertices of a 45o right triangle connected by springs of equal force constant k. The atoms
are constrained to move in the xy plane. We will determine the modes of oscillation of this
molecule.

Zero Modes:

(a) The vectors in the space of displacements are labelled by

~Q = (x1, y1, x2, y2, x3, y3) (1)

where (x1, y1) are the coordinates of particle 1, etc. Show that a displacement corre-
sponding to a global rotation parameterized by the angle δθ around the z axis coming
out of the page is

~Qrot−z = aδθ (1,−3, 1, 3,−2, 0) . (2)

Here we have chosen the long-length of the triangle to be 6a and the height of the
triangle to be 3a, the origin is taken to be the center of mass.

6a
<latexit sha1_base64="Ap8WSgM+7KwsIEPneNC43NW9Sqk=">AAACBHicbVDLSgMxFL3js9ZX1aWbYBFclZkq2mXBjcsq9gHtUDJppg1NJkOSEcrQrSu3+hXuxK3/4Uf4D2baWdjWA4HDOfdybk4Qc6aN6347a+sbm1vbhZ3i7t7+wWHp6LilZaIIbRLJpeoEWFPOIto0zHDaiRXFIuC0HYxvM7/9RJVmMno0k5j6Ag8jFjKCjZUernG/VHYr7gxolXg5KUOORr/00xtIkggaGcKx1l3PjY2fYmUY4XRa7CWaxpiM8ZB2LY2woNpPZ5dO0blVBiiUyr7IoJn6dyPFQuuJCOykwGakl71M/M/rJias+SmL4sTQiMyDwoQjI1H2bTRgihLDJ5Zgopi9FZERVpgYW85CSiDsNgokH2QpRduPt9zGKmlVK95lpXp/Va7X8qYKcApncAEe3EAd7qABTSAQwgu8wpvz7Lw7H87nfHTNyXdOYAHO1y8BUpe3</latexit>

3a
<latexit sha1_base64="EVuMt3GEJeUGs6JoyIN6Ka4a8no=">AAACBHicbVDLSgMxFL1TX7W+qi7dBIvgqsy0gl0W3LisYh/QDiWTybShSWZIMkIZunXlVr/Cnbj1P/wI/8FM24W2HggczrmXc3OChDNtXPfLKWxsbm3vFHdLe/sHh0fl45OOjlNFaJvEPFa9AGvKmaRtwwynvURRLAJOu8HkJve7j1RpFssHM02oL/BIsogRbKx0X8fDcsWtunOgdeItSQWWaA3L34MwJqmg0hCOte57bmL8DCvDCKez0iDVNMFkgke0b6nEgmo/m186QxdWCVEUK/ukQXP190aGhdZTEdhJgc1Yr3q5+J/XT03U8DMmk9RQSRZBUcqRiVH+bRQyRYnhU0swUczeisgYK0yMLedPSiDsNgpiHuYpJduPt9rGOunUql69Wru7qjQby6aKcAbncAkeXEMTbqEFbSAQwTO8wKvz5Lw5787HYrTgLHdO4Q+czx/8Y5e0</latexit>

y
<latexit sha1_base64="rTXxhxKgqlc7qOWYsbPHVZgZVpA=">AAACA3icbVDLSgMxFM3UV62vqks3wSK4KjNVsMuCG5ct2Ae0Q8lkMm1oHkOSEYahS1du9SvciVs/xI/wH8y0s7CtBwKHc+7l3JwgZlQb1/12SlvbO7t75f3KweHR8Un19KynZaIw6WLJpBoESBNGBekaahgZxIogHjDSD2b3ud9/IkpTKR5NGhOfo4mgEcXIWKmTjqs1t+4uADeJV5AaKNAeV39GocQJJ8JghrQeem5s/AwpQzEj88oo0SRGeIYmZGipQJxoP1scOodXVglhJJV9wsCF+ncjQ1zrlAd2kiMz1eteLv7nDRMTNf2MijgxROBlUJQwaCTMfw1Dqgg2LLUEYUXtrRBPkULY2G5WUgJut2EgWZinVGw/3nobm6TXqHs39UbnttZqFk2VwQW4BNfAA3egBR5AG3QBBgS8gFfw5jw7786H87kcLTnFzjlYgfP1C6tsl48=</latexit>

1 2

3

(b) Write down the other zero modes parametrized by the coordinates Xcm and Ycm.

Vibrational Modes:

(c) Under a reflection over the y axis the displacements ~Q are mapped to some new dis-

pacements ~Q. Explain qualitatively why ~Q

~Q→ ~Q = (x1, y1, x2, y2, x3, y3) = (− x2, y2,−x1, y1,−x3, y3) .

We say that a vector is odd under reflection if ~Q = − ~Q and even under reflection

if ~Q = ~Q. Since the problem is symmetric under reflections, the eigenmodes will be
either even or odd. The rotation in Eq. (2) is an eigen mode with zero eigenvalue. Is
this mode even or odd?

(d) Show that there is only one odd basis vector (parameterized by a coordinate qo(t))
which is orthogonal to the three zero modes and determine its form. Then write
down two (somewhat arbitrary) even basis vectors parameterized by two generalized
coordinates q1(t) and q2(t) which are orthogonal to the zero modes, which you will use
to parametrize the even oscillations.
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(e) Write down the Lagrangian of the system using the six well chosen coordinates
(Xcm, Ycm, δθ, qo, q1, q2) instead of (x1, y1, x2, y2, x3, y3).

(f) Find the eigen-frequencies of the system and qualitatively sketch the non-zero vibra-
tional modes. You should find

ω2 =
3k

m
,
2k

m
,
k

m
(3)
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Problem 2. (Landau) Forced oscillations the easier complex way

(a) Determine the retarded green function of the following equations:

(i)
da

dt
− iω0a = 0 (4)

(ii)
ẍ+ ηẋ = 0 (5)

(b) Consider the driven harmonic oscillator

ẍ+ ω2
0x =

f(t)

m
(6)

Write it as an equation for a = ẋ + iωx, and use the green function of (a) to find the
specific solution, a(t).

(c) Consider the specific force

f(t) =

{
F0 −τ < t < τ

0 otherwise
. (7)

Determine and plot the energy in the oscillator for t → ∞ as a function of ω0τ . You
should find

E =
2F 2

0

mω2
0

sin2(ω0τ/2) (8)

Give a simple interpretation of the answer for the limit when ω0τ small but finite.
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Problem 3. (Laurence Yaffe ) A driven set of oscillators

General Background: Consider a set of coupled harmonic oscillators interacting with
external time dependent forces. The oscillator Lagrangian without the forces reads1

L0 =
∑

ij

1

2
Mij q̇

iq̇j − 1

2
Kijq

iqj . (9)

The Lagrangian for the forces driving the system is

Lint =
∑

i

Fi(t)q
i , (10)

and the total Lagrangian is L = L0 + Lint. As always, switch coordinates to the eigen basis
of the generalized eigenvalue problem

qi =
∑

a

Ei
aQ

a , (11)

where the ~Ea is the a-th eigen-vector of the generalized eigenvalue problem, K ~Ea = λaM ~Ea.
Recall that the natural frequency assoicated with the a-th normal mode is λa = ω2

a, and the
eigenvectors are orthonormal with the mass matrix as weight:

∑

ij

Ei
aMijE

j
b = δab . (12)

(a) Determine the Lagrangian for the coordinates Qa, and show that the resulting equation
of motion is

Q̈a + ω2
aQ

a = Fa , (13)

where Fa =
∑

i FiE
i
a is the projection of the force vector ~F = (Fi) onto the a-th normal

mode, i.e. Fa = ~F · ~Ea .

Problem: Now consider two masses, m1 = 2m and m2 = m, are suspended in a uniform
gravitational field g by identical massless springs with spring constant k. Assume that only
vertical motion occurs, and let z1 and z2 denote the vertical displacement of the masses from
their equilibrium positions, increasing in the downward direction as shown. An external
time-dependent force F (t) is applied to the lower mass (with F > 0 indicating a downward
vertical force). Assume that the external force vanishes as t→ ±∞, with the system initially
at rest in its equilibrium configuration at time2 −∞.

1For the rest of this problem we will not use the summation convention.
2For example take

F (t) = F0e
−|t|/τ (14)

Let F (ω) denote the Fourier transform of F (t)

F (ω) =

∫ ∞

−∞
dteiωtF (t) =

2F0τ

1 + (ωτ)2
(15)
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Physics 505 Problem Set #6 February 15, 2017
Due Tuesday, February 21, 2017

1. Hanging Masses Redux
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Two masses, m1 = 2m and m2 = m, are suspended in a uniform gravita-
tional field g by identical massless springs with spring constant k. Assume
that only vertical motion occurs, and let z1 and z2 denote the vertical dis-
placement of the masses from their equilibrium positions, increasing in the
downward direction as shown. An external time-dependent force F (t) is
applied to the lower mass (with F > 0 indicating a downward vertical
force). Assume that the external force vanishes as t ! ±1, with the
system initially at rest in its equilibrium configuration at time �1. Let
eF (!) denote the Fourier transform of F (t).

(a) Construct the Lagrangian for the system, including the external force,
and find the resulting equations of motion.

(b) Solve for the motion of both masses (expressed as an integral involving
the time-dependent force).

(c) Find the total work down on the system by the external force, �E =
E(+1) � E(�1). Show that it can be expressed in the form

�E =

Z 1

�1

d!

2⇡
e�(!) | eF (!)|2 ,

with e�(!) real and positive.

(d) Extra credit: If a small damping term is added to each equation of
motion, so mi z̈i ! mi z̈i + 1

2
� żi, how does this change the response

function e�(!)?

2. Select a problem from the archive of 1996–2011 qualifying exam problems, available at
https://sharepoint.washington.edu/phys/grad/Pages/Masters-Review.aspx , which
is related to the material we have covered to date in class and which you find both interesting
and reasonably challenging. Solve it and write it up clearly.

(b) Construct the Lagrangian for the system, including the external force, and find the
resulting equations of motion.

(c) Solve for the motion of both masses (expressed as an integral involving the time-
dependent force).

(d) Find the total work done on the system by the external force, W = E(+∞)−E(−∞).
Show that it can be expressed in the form

W =

∫ ∞

−∞

dω

2π
χ(ω)|F (ω)|2 (16)

with χ(ω) real and positive. χ(ω) is known as the spectral density, and will be pro-
portional to a sum delta-functions at the resonance frequencies of the system in the
absence of damping.

(e) If a small damping term is added to each equation of motion, so miz̈i → miz̈i +miηżi.
How are the results of (c) modified.

(f) With the dissipation described in the previous item, again find the total work done by
the force on the system. (W is not equal to E(∞) − E(−∞), since the work done is
ultimately dissipated away.) Show again that the work can be expressed as

W =

∫ ∞

−∞

dω

2π
χ(ω)|F (ω)|2 (17)

Sketch χ(ω) with and without damping on the same plot.
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