Lagrangian Formulation

- Take a free particle (no forces)

$$
\frac{d}{d t}\left(m \frac{d \stackrel{\rightharpoonup}{x}}{d t}\right)=-\frac{\partial \psi^{0}}{\partial \vec{x}}
$$

straight line trajectory in (t, x) plane.

- Clearly, at least for the free particle, this trajectory minimizes the "distance". in the (t, x) plane. This motivates us to try to formulate the whole forced motion as a minimization procedure. Wewill
 Choose the measure of "distance" to reproduce Newton. satisfying the $x_{1}=x\left(t_{1}\right)$ Eon

As for the free case we will Change (or vary) the path

$$
\bar{x}(t) \rightarrow \bar{x}(t)+\delta x(t)
$$

While keeping the end points fixed

$$
\pi \quad \delta x\left(t_{1}\right)=\delta x\left(t_{2}\right)=0
$$

(End points fixed)

- Then

$$
S[x(t)]=\int_{t_{1}}^{t_{L}} d t L(x, \dot{x}, t)
$$

local measure of action: the Lagrangian
"distance"
in configuration
space is known as action. Takes a path and gives a number.
Changing the path does not change the action if $x(t)$ satisfies the equation of motion

$$
S[x+\delta x]=S[x] \leftarrow x \text {-must satisfy }
$$

the EOM.

- Now (for this to be true)

$$
S[\vec{x}+\delta \vec{x}]=\int d t L\left(\vec{x}+\delta \vec{x}, \stackrel{\rightharpoonup}{x}+\frac{d}{d t} \delta \vec{x}, t\right)
$$

O_{r}

$$
S[x+\delta x]=\int \frac{\int d t L(x, \dot{x}, t)}{\int S[x]} \text {, } \int d t \frac{\partial L}{\partial \dot{x}} \delta \dot{x}+\frac{\partial L}{\partial \dot{x}} \frac{d \delta x}{d t}
$$

So

$$
\begin{aligned}
\delta S & =S[x+\delta x]-S[x] \\
& =\int d t \frac{\partial L}{\partial x} \delta x+\frac{\partial L}{\partial \dot{x}} \frac{d \delta x}{d t}
\end{aligned}
$$

integrate by parts

$$
\delta S=\left.\frac{\partial L}{\partial \dot{x}} \delta x\right|_{t_{1}} ^{t_{2}}+\int_{t_{1}}^{t_{2}} d t\left(\frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}\right) \delta x(t)
$$

variation
For a general ^ this doesn't vanish (and will be important later). 'But, here we required $\delta x\left(t_{2}\right)=\delta x\left(t_{1}\right)=0$, and thus:

$$
\delta S=\int_{t_{1}}^{t_{2}} d t\left(\frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}\right) \delta x(t)
$$

- We want $\delta S=0$, and $\delta x(t)$ is arbitrary: take $\delta x(t)$, for example, to be a "blip" $\frac{\int_{x(t)}^{\pi} \text { Blip at } t_{*}}{t_{*}}$ at time t_{*}

So

$$
\left.\delta S \simeq\left(\frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}\right)\right|_{t=t_{*}} \int_{t} d t \delta x\left(t_{*}\right)=0
$$

So require

$$
\left(\frac{\partial L}{\partial x}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}\right)=0
$$

We see that if

$$
L=\frac{1}{2} m \dot{x}^{2}-V(x)
$$

then the Eon work (ie. agree (©) Newton)

$$
\begin{aligned}
& \frac{d}{d t}(\underbrace{m \dot{x}}_{\uparrow})=-\frac{\partial V}{\partial x} \\
& \frac{\partial L}{\partial \dot{x}}=p \quad r
\end{aligned}
$$

We have treated one particle in one dimension, but if more particles and dimensions cause no difficulty in practice

In general:

$$
L=\sum_{a} \frac{1}{2} m_{a} \dot{\vec{x}}_{a}^{2}-V\left(\vec{x}_{a}\right)
$$

And the Eom are (x, y, z)

$$
-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}_{a i}}+\frac{\partial L}{\partial x_{a i}}=0
$$

$$
\vec{x}_{a}=\left(x_{a 1,}, x_{a 2}, x_{a 3}\right)
$$

components
or of $a-t h$

$$
-\frac{d}{d t}\left(\frac{\partial L}{\partial \tilde{x}_{a}}\right)+\frac{\partial L}{\partial \vec{x}_{a}}=0
$$ vector.

When clear from context

