1.4 Motion in a Central Potential

Central potentials $U(r)$ and the Kepler Problem

- We have two bodies with m_{1} and \boldsymbol{r}_{1} and m_{2} and \boldsymbol{r}_{2}, and generally take \boldsymbol{r}_{1} to be the "earth" and \boldsymbol{r}_{2} and sun. We first switch to center of mass \boldsymbol{R} and relative coordinates \boldsymbol{r}

$$
\begin{align*}
\boldsymbol{R} & =\frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{M}, \tag{1.82}\\
\boldsymbol{r} & =\boldsymbol{r}_{1}-\boldsymbol{r}_{2} . \tag{1.83}
\end{align*}
$$

with $M=m_{1}+m_{2}$. We have the kinetic energy

$$
\begin{equation*}
T=\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2} \tag{1.84}
\end{equation*}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass, and thus the Lagrangian is

$$
\begin{equation*}
L=\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}-U(|\boldsymbol{r}|) \tag{1.85}
\end{equation*}
$$

where $U(|\boldsymbol{r}|)$ is the potential energy of the two particles.

- The overall center of mass motion does not change the orbital dynamics. We can choose $\boldsymbol{R}=\dot{\boldsymbol{R}}=0$, so that the angular momentum of the center of mass is zero. Then the internal angular momentum is

$$
\begin{equation*}
\boldsymbol{L}=\mu \boldsymbol{r} \times \dot{\boldsymbol{r}} \tag{1.86}
\end{equation*}
$$

\boldsymbol{L} can be chosen to lie along the z axis so that \boldsymbol{r} lies in the x, y plane

$$
\begin{equation*}
\boldsymbol{r}=r(\cos \phi, \sin \phi, 0) \tag{1.87}
\end{equation*}
$$

The Lagrangian neglecting the center of mass motion is

$$
\begin{equation*}
L=\frac{1}{2} \mu\left(r^{2}+r^{2} \dot{\phi}^{2}\right)-U(r) \tag{1.88}
\end{equation*}
$$

- There are two integrals of motion for the motion in the effective potential:

$$
\begin{align*}
\ell & =\mu r^{2} \dot{\phi}, \tag{1.89}\\
E & =\frac{1}{2} \mu \dot{r}^{2}+V_{\mathrm{eff}}(r, \ell) \tag{1.90}
\end{align*}
$$

The effective particle with mass μ moves in the effective potential is

$$
\begin{equation*}
V_{\mathrm{eff}}(r, \ell)=\frac{\ell^{2}}{2 \mu r^{2}}+U(r) . \tag{1.91}
\end{equation*}
$$

Given the integrals of motion E and ℓ it is easy to determine $d \phi / d$ and $d r / d t$. From there it is straightforward to find an equation for $d r / d \phi=\dot{r} / \dot{\phi}$. Integrating $d r / d \phi$ gives the orbit for $r(\phi)$. This integral from $\left(r_{1}, \phi_{1}\right)$ to (r, ϕ) is

$$
\begin{equation*}
\phi-\phi_{1}=\frac{\ell}{\sqrt{2 \mu}} \int_{r_{1}}^{r} \frac{d r / r^{2}}{\sqrt{E-V_{\text {eff }}(r, \ell)}} \tag{1.92}
\end{equation*}
$$

for an arbitrary potential $U(r)$.

- For the coulomb potential $U=-k / r$, Eq. (1.92) for $r(\phi)$ can be integrated by making the "conformal" substitution

$$
\begin{equation*}
u \equiv \frac{1}{r} \quad d u=\frac{d r}{r^{2}}, \tag{1.93}
\end{equation*}
$$

Figure 1.1:
leading to the equation of an ellipse:

$$
\begin{equation*}
\frac{1}{r}=\frac{1}{r_{0}}(1+e \cos (\phi)) . \tag{1.94}
\end{equation*}
$$

r_{0} is known as the lattice rectum (see figure for geometric meaning), and e is known as the eccentricity of the ellipse, which is a measure of how much the orbit deviates from a circle. A convenient summary of the elliptic geometry is given in Fig. 1.1
The parameters of the ellipse r_{0} and e are determined by the integrals of motion, E and ℓ. The lattice rectum is determined by the angular momentum, $r_{0}=\ell^{2} / \mu k$. The eccentricity e is determined by the excitation energy above the minimum of $V_{\text {eff }}$ (with fixed ℓ). More explicitly $e=\sqrt{1+E / \epsilon_{0}}$, with $\epsilon_{0}=\ell^{2} / 2 \mu r_{0}^{2}$. When the energy of the orbit is at its minimum, $E=V_{\min }=-\epsilon_{0}$, then the eccentricity is zero and the radius is constant, i.e. the orbit is circular.

- The Coulomb potential has a characteristic scale $r_{0} \sim \ell^{2} / \mu k$ when the potential k / r_{0} and kinetic $\ell^{2} / \mu r_{0}^{2}$ are the same order of magnitude. Indeed, for a circular orbit of radius r_{0}, one shows by freshman physics that the radius is determined by the angular momentum, $r_{0}=\ell^{2} / \mu k$. For such a circular orbits the kinetic energy is $\epsilon_{0} \equiv \ell^{2} / 2 \mu r_{0}$ and is minus-half the potential $U=-k / r_{0}=-2 \epsilon_{0}$. The total energy (kinetic+potential) is $E=-\epsilon_{0}$ where

$$
\begin{equation*}
\epsilon_{0} \equiv \frac{\ell^{2}}{2 \mu r_{0}^{2}}=\frac{k}{2 r_{0}} \tag{1.95}
\end{equation*}
$$

which explains the notation for the parameters in the previous item.

- For the Newton potential $U=-k / r$ and the spherical harmonic oscillator $U=\frac{1}{2} k r^{2}$ the orbits are closed (Bertrand's theorem). For no other central potentials are the orbits closed. The closed orbits are a consequence of an additional symmetry which we will discuss later.

Cross sections and scattering

- When considering the scattering problem we are interested in computing the scattering angle θ (the angle of deflection) for given energy E and impact parameter b. Here the impact parameter b is the transverse distance at large r from the target and is another way to record the angular momentum. At larger r the velocity is constant, $E=\frac{1}{2} m v^{2}$, and the angular momentum is

$$
\begin{equation*}
\ell=m v r \sin \theta=m v b=\sqrt{2 m E} b \tag{1.96}
\end{equation*}
$$

- The scattering angle $\theta(b)$ is shown below:

A particle comes in with impact parameters b (or angular momentum ℓ) and energy E, and is deflected by angle $\theta(b, E)$. From our mechanical perspective we find it easiest to compute the change in the angle ϕ as the particle propagates from its distance of closest approach $r_{\text {min }}$ up to infinity. This is (the second) angle ψ in the figure above. It is related to $\theta(b, E)$ by simple geometry.

$$
\begin{equation*}
\theta(b)=\pi-2 \psi \tag{1.97}
\end{equation*}
$$

We have from Eq. (1.92)

$$
\begin{equation*}
\Delta \phi=\psi=\frac{\ell}{\sqrt{2 m}} \int_{r_{\min }}^{\infty} \frac{d r / r^{2}}{\left(E-V_{\mathrm{eff}}(r)\right)^{1 / 2}} \tag{1.98}
\end{equation*}
$$

For the Coulomb problem $U=k / r$ this integration is straightforward with the substitution $u=1 / r$, and yields $\tan (\psi)$ and since $\psi=\pi / 2-\theta / 2$

$$
\begin{equation*}
\cot (\theta / 2)=\frac{2 E b}{k} \tag{1.99}
\end{equation*}
$$

- The scattering problem is usually phrased in terms of cross section:
(i) Consider a beam of particles of luminosity $\mathscr{L} . \mathscr{L}$ is the number of particles crossing the target per area per time, and is also called the incident flux or intensity.
(ii) The number of incoming particles which scatter per time $d \Gamma$ with impact parameter between b and $d b$ is $d \Gamma=\mathscr{L} 2 \pi b|d b|$. We put absolute values because we think of $d b$ as an positive interval.
(iii) The number of incoming particles per time (or rate $d \Gamma$) which then end up at in ring of solid angle $d \Omega=2 \pi \sin (\theta)|d \theta|$ per time is

$$
\begin{equation*}
d \Gamma=\mathscr{L} \frac{b}{\sin \theta} \frac{|d b|}{|d \theta|} d \Omega \tag{1.100}
\end{equation*}
$$

So the scattering rate per solid angle is

$$
\begin{equation*}
\frac{d \Gamma}{d \Omega}=\mathscr{L} \frac{b}{\sin \theta} \frac{|d b|}{|d \theta|} \tag{1.101}
\end{equation*}
$$

The cross section is by definition the scattering rate divided by the incident flux

$$
\begin{equation*}
\frac{d \sigma}{d \Omega} \equiv \frac{1}{\mathscr{L}} \frac{d \Gamma}{d \Omega}=\frac{b}{\sin \theta}\left|\frac{d b}{d \theta}\right| \tag{1.102}
\end{equation*}
$$

(iv) The cross section has units of area and gives a measure of the effective size of the target. It is usually measured in barns, 1 barn $=10^{-24} \mathrm{~cm}^{2}$.

- For the Coulomb problem, we can different $d \theta / d b$ (Eq. (1.99)) and use it in Eq. (1.102) to determine the Rutherford cross section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{k}{4 E}\right)^{2} \frac{1}{\sin ^{4}(\theta / 2)} \sim \frac{1}{\theta^{4}}, \tag{1.103}
\end{equation*}
$$

which is inversely proportional to $1 / \theta^{4}$ at small angles.

