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1.4 Motion in a Central Potential

Central potentials U(r) and the Kepler Problem

• We have two bodies with m1 and r1 and m2 and r2, and generally take r1 to be the “earth” and r2

and sun. We first switch to center of mass R and relative coordinates r

R =
m1r1 +m2r2

M
, (1.82)

r =r1 − r2 . (1.83)

with M = m1 +m2. We have the kinetic energy

T =
1

2
MṘ2 +

1

2
µṙ2 (1.84)

where µ = m1m2/(m1 +m2) is the reduced mass, and thus the Lagrangian is

L =
1

2
MṘ2 +

1

2
µṙ2 − U(|r|) (1.85)

where U(|r|) is the potential energy of the two particles.

• The overall center of mass motion does not change the orbital dynamics. We can choose R = Ṙ = 0,
so that the angular momentum of the center of mass is zero. Then the internal angular momentum is

L =µr × ṙ (1.86)

L can be chosen to lie along the z axis so that r lies in the x, y plane

r = r (cosφ, sinφ, 0) (1.87)

The Lagrangian neglecting the center of mass motion is

L =
1

2
µ(r2 + r2φ̇2)− U(r) (1.88)

• There are two integrals of motion for the motion in the effective potential:

` =µr2φ̇ , (1.89)

E =
1

2
µṙ2 + Veff(r, `) . (1.90)

The effective particle with mass µ moves in the effective potential is

Veff(r, `) =
`2

2µr2
+ U(r) . (1.91)

Given the integrals of motion E and ` it is easy to determine dφ/d and dr/dt. From there it is
straightforward to find an equation for dr/dφ = ṙ/φ̇. Integrating dr/dφ gives the orbit for r(φ). This
integral from (r1, φ1) to (r, φ) is

φ− φ1 =
`√
2µ

∫ r

r1

dr/r2

√
E − Veff(r, `)

(1.92)

for an arbitrary potential U(r).

• For the coulomb potential U = −k/r, Eq. (1.92) for r(φ) can be integrated by making the “conformal”
substitution

u ≡ 1

r
du =

dr

r2
, (1.93)
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• Polar representation

1

r
=

1

r0
(1 + e cos(�))

(r cos(�), r sin(�))

rmax = r0/(1 � e)

b = r0/
p

1 � e2

a = r0/(1 � e2)

r0

PerihelionAphelion focus

x

y

• Area
A = ⇡ab

rmin = r0/(1 + e)

Figure 1.1:

leading to the equation of an ellipse:

1

r
=

1

r0
(1 + e cos(φ)) . (1.94)

r0 is known as the lattice rectum (see figure for geometric meaning), and e is known as the eccentricity
of the ellipse, which is a measure of how much the orbit deviates from a circle. A convenient summary
of the elliptic geometry is given in Fig. 1.1

The parameters of the ellipse r0 and e are determined by the integrals of motion, E and `. The lattice
rectum is determined by the angular momentum, r0 = `2/µk. The eccentricity e is determined by
the excitation energy above the minimum of Veff (with fixed `). More explicitly e =

√
1 + E/ε0, with

ε0 = `2/2µr2
0. When the energy of the orbit is at its minimum, E = Vmin = −ε0, then the eccentricity

is zero and the radius is constant, i.e. the orbit is circular.

• The Coulomb potential has a characteristic scale r0 ∼ `2/µk when the potential k/r0 and kinetic
`2/µr2

0 are the same order of magnitude. Indeed, for a circular orbit of radius r0, one shows by
freshman physics that the radius is determined by the angular momentum, r0 = `2/µk. For such a
circular orbits the kinetic energy is ε0 ≡ `2/2µr0 and is minus-half the potential U = −k/r0 = −2ε0.
The total energy (kinetic+potential) is E = −ε0 where

ε0 ≡
`2

2µr2
0

=
k

2r0
, (1.95)

which explains the notation for the parameters in the previous item.

• For the Newton potential U = −k/r and the spherical harmonic oscillator U = 1
2kr

2 the orbits are
closed (Bertrand’s theorem). For no other central potentials are the orbits closed. The closed orbits
are a consequence of an additional symmetry which we will discuss later.

Cross sections and scattering

• When considering the scattering problem we are interested in computing the scattering angle θ (the
angle of deflection) for given energy E and impact parameter b. Here the impact parameter b is the
transverse distance at large r from the target and is another way to record the angular momentum.
At larger r the velocity is constant, E = 1

2mv
2, and the angular momentum is

` = mvr sin θ = mvb =
√

2mEb (1.96)
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• The scattering angle θ(b) is shown below:

Scattering: 1

A particle comes in with impact parameters b (or angular momentum `) and energy E, and is deflected
by angle θ(b, E). From our mechanical perspective we find it easiest to compute the change in the
angle φ as the particle propagates from its distance of closest approach rmin up to infinity. This is (the
second) angle ψ in the figure above. It is related to θ(b, E) by simple geometry.

θ(b) = π − 2ψ . (1.97)

We have from Eq. (1.92)

∆φ = ψ =
`√
2m

∫ ∞

rmin

dr/r2

(E − Veff(r))1/2
. (1.98)

For the Coulomb problem U = k/r this integration is straightforward with the substitution u = 1/r,
and yields tan(ψ) and since ψ = π/2− θ/2

cot(θ/2) =
2Eb

k
. (1.99)

• The scattering problem is usually phrased in terms of cross section:

(i) Consider a beam of particles of luminosity L . L is the number of particles crossing the target
per area per time, and is also called the incident flux or intensity.

(ii) The number of incoming particles which scatter per time dΓ with impact parameter between b
and db is dΓ = L 2πb|db|. We put absolute values because we think of db as an positive interval.

(iii) The number of incoming particles per time (or rate dΓ) which then end up at in ring of solid
angle dΩ = 2π sin(θ)|dθ| per time is

dΓ = L
b

sin θ

|db|
|dθ| dΩ . (1.100)

So the scattering rate per solid angle is

dΓ

dΩ
= L

b

sin θ

|db|
|dθ| . (1.101)

The cross section is by definition the scattering rate divided by the incident flux

dσ

dΩ
≡ 1

L

dΓ

dΩ
=

b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ . (1.102)

(iv) The cross section has units of area and gives a measure of the effective size of the target. It is
usually measured in barns, 1 barn = 10−24 cm2.
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• For the Coulomb problem, we can different dθ/db (Eq. (1.99)) and use it in Eq. (1.102) to determine
the Rutherford cross section

dσ

dΩ
=

(
k

4E

)2
1

sin4(θ/2)
∼ 1

θ4
, (1.103)

which is inversely proportional to 1/θ4 at small angles.
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