1.1 Newtonian mechanics a brief review

Momentum and Center of Mass

- Newton's equations of motion for a system of particles reads

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{a}}{d t}=\boldsymbol{F}_{a} \tag{1.1}
\end{equation*}
$$

where $a=1 \ldots N$ labels the particles. Here $\boldsymbol{p}_{a}=m_{a} \boldsymbol{v}_{a}$. We usually divide up the forces on the a-the particle into external forces acting on the system from outside, and internal forces acting between pairs of particles:

$$
\begin{equation*}
\boldsymbol{F}_{a}=\underbrace{\boldsymbol{F}_{a}^{\mathrm{ext}}}_{\text {external forces }}+\underbrace{\sum_{b \neq a} \boldsymbol{F}_{a b}}_{\text {internal forces }} \tag{1.2}
\end{equation*}
$$

Here

$$
\begin{equation*}
\boldsymbol{F}_{a b} \equiv \text { Force on particle } a \text { by } b, \tag{1.3}
\end{equation*}
$$

and of course we have Newton's equal and opposite rule

$$
\begin{equation*}
\boldsymbol{F}_{a b}=-\boldsymbol{F}_{b a} \tag{1.4}
\end{equation*}
$$

- Summing over the particles we find (after using Eq. (1.4)) that the internal forces cancel and the total change in momentum per time is the sum of external forces

$$
\begin{equation*}
\frac{d \boldsymbol{P}_{\mathrm{tot}}}{d t}=\boldsymbol{F}_{\mathrm{tot}}^{\mathrm{ext}} \tag{1.5}
\end{equation*}
$$

where $\boldsymbol{P}_{\text {tot }}=\sum_{a} \boldsymbol{p}_{a}$ and $\boldsymbol{F}_{\text {tot }}^{\text {ext }}=\sum_{a} \boldsymbol{F}_{a}^{\text {ext }}$. If there are no external forces then $\boldsymbol{P}_{\text {tot }}$ is constant

- The velocity of the center of mass is

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{cm}}=\frac{\boldsymbol{P}_{\mathrm{tot}}}{M_{\mathrm{tot}}}=\frac{1}{M_{\mathrm{tot}}} \sum_{a} m_{a} \boldsymbol{v}_{a} \tag{1.6}
\end{equation*}
$$

The position of the center of mass (relative to an origin O) is

$$
\begin{equation*}
\boldsymbol{R}_{\mathrm{cm}}=\frac{1}{M_{\mathrm{tot}}} \sum_{a} m_{a} \boldsymbol{r}_{a} \tag{1.7}
\end{equation*}
$$

Angular momentum:

- Angular momentum is defined with respect to a specific origin O (i.e. \boldsymbol{r}_{a} depends on O) which is not normally notated

$$
\begin{equation*}
\boldsymbol{\ell}_{a, O} \equiv \boldsymbol{\ell}_{a} \equiv \boldsymbol{r}_{a} \times \boldsymbol{p}_{a} \tag{1.8}
\end{equation*}
$$

It evolves as

$$
\begin{equation*}
\frac{d \boldsymbol{\ell}}{d t}=\boldsymbol{r}_{a} \times \boldsymbol{F}_{a} \tag{1.9}
\end{equation*}
$$

- The total angular momentum $\boldsymbol{L}_{\text {tot }}=\sum_{a} \boldsymbol{\ell}_{a}$ changes due to the total external torque

$$
\begin{equation*}
\frac{d \boldsymbol{L}_{\mathrm{tot}}}{d t}=\boldsymbol{\tau}_{\mathrm{tot}}^{\mathrm{ext}} \tag{1.10}
\end{equation*}
$$

where $\boldsymbol{\tau}_{\text {tot }}^{\text {ext }}=\sum_{a} \boldsymbol{r}_{a} \times \boldsymbol{F}_{a}^{\text {ext }}$ were we have generally assumed that the internal forces are radially directed $\boldsymbol{F}_{a b} \propto\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right)$

- The angular momentum depends on the origin O. Writing the position of the particle relative to the center of mass as $\Delta \boldsymbol{r}_{a}$, i.e.

$$
\begin{equation*}
\boldsymbol{r}_{a}=\boldsymbol{R}_{\mathrm{cm}}+\Delta \boldsymbol{r}_{a} \tag{1.11}
\end{equation*}
$$

the angular momentum of the system about O is

$$
\begin{equation*}
\boldsymbol{L}_{O}=\underbrace{\boldsymbol{R}_{\mathrm{cm}} \times \boldsymbol{P}_{\mathrm{tot}}}+\underbrace{\sum_{a} \Delta \boldsymbol{r}_{a} \times \boldsymbol{p}_{a}} \tag{1.12}
\end{equation*}
$$

Ang-mom of center of mass about O Ang-mom about the cm

Energy

- Energy conservation is derived by taking the dot product of \boldsymbol{v} with $d \boldsymbol{p} / d t$. We find that the change in kinetic energy (on the a-the particle) equals the work done (on the a-particle).

$$
\begin{equation*}
\left.\frac{1}{2} m_{a} v_{a}^{2}(t)\right|_{t_{1}} ^{t_{2}}=W_{a} \tag{1.13}
\end{equation*}
$$

where the work is

$$
\begin{equation*}
W_{a}=\int_{\boldsymbol{r}_{a}\left(t_{1}\right)}^{\boldsymbol{r}_{a}\left(t_{2}\right)} \boldsymbol{F}_{a} \cdot \mathrm{~d} \boldsymbol{r}_{a} \tag{1.14}
\end{equation*}
$$

- Potential Energy. For conservative forces the force can be written as (minus) the gradient of a scalar function which we call the potential energy

$$
\begin{equation*}
\boldsymbol{F}_{a}=-\nabla_{\boldsymbol{r}_{a}} U \tag{1.15}
\end{equation*}
$$

Consider the potential energy U_{12} between particle 1 and 2 . Since the force is equal and opposite

$$
\begin{equation*}
\boldsymbol{F}_{12}=-\nabla_{\boldsymbol{r}_{1}} U_{12}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=+\nabla_{\boldsymbol{r}_{2}} U_{12}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\boldsymbol{F}_{21} \tag{1.16}
\end{equation*}
$$

and this is used to conclude that interaction potential between two particles is of the form

$$
\begin{equation*}
U_{12}^{\mathrm{int}}=U\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right) \tag{1.17}
\end{equation*}
$$

Typically we divide up the potential into an external potential and the internal ones

$$
\begin{equation*}
U\left(\boldsymbol{r}_{a}\right)=U^{\mathrm{ext}}\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a b, a \neq b} U_{a b}^{\mathrm{int}}\left(\boldsymbol{r}_{a}, \boldsymbol{r}_{b}\right) \tag{1.18}
\end{equation*}
$$

The sum over the internal potentials comes with a factor of a half because the energy between particle-1 and particle-2 is counted twice in the sum, e.g. for just two particles

$$
\begin{equation*}
U_{12}^{\mathrm{int}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{2}\left(U\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)+U\left(\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right|\right)\right) . \tag{1.19}
\end{equation*}
$$

- Energy. The total energy is

$$
\begin{equation*}
E=\sum_{a} \frac{1}{2} m_{a} v_{a}^{2}+U^{\mathrm{ext}}\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a b, a \neq b} U_{a b}^{\mathrm{int}}\left(\boldsymbol{r}_{a}, \boldsymbol{r}_{b}\right) \tag{1.20}
\end{equation*}
$$

and is constant if there are no non-conservative forces.
If there are non-conservative forces then

$$
\begin{equation*}
E\left(t_{2}\right)-E\left(t_{1}\right)=W_{\mathrm{NC}} \tag{1.21}
\end{equation*}
$$

where the work done by the non-conservative forces is $W_{N C}=\sum_{a} \int \boldsymbol{F}_{a}^{N C} \cdot \mathrm{~d} \boldsymbol{r}_{a}$

- It is convenient to measure velocities relative to the center of mass

$$
\begin{equation*}
\boldsymbol{v}_{a}=\boldsymbol{v}_{\mathrm{cm}}+\Delta \boldsymbol{v}_{a} \tag{1.22}
\end{equation*}
$$

where $\Delta \boldsymbol{v}_{a}=\dot{\Delta} \boldsymbol{r}_{a}$, then the kinetic energy

$$
\begin{equation*}
K=\underbrace{\frac{1}{2} M_{\mathrm{tot}} v_{\mathrm{cm}}^{2}}+\underbrace{\sum_{a} \frac{1}{2} m_{a} \Delta v_{a}^{2}} \tag{1.23}
\end{equation*}
$$

KE of center-mass KE relative to center-mass

Galilean invariance:

- Consider newtons laws then for an isolated system of particles

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{a}}{d t}=\boldsymbol{F}_{a} \tag{1.24}
\end{equation*}
$$

where $\boldsymbol{F}_{a}=-\nabla_{\boldsymbol{r}_{a}} U$ with

$$
\begin{equation*}
U=\frac{1}{2} \sum_{a b, a \neq b} U_{a b}^{\mathrm{int}}\left(\left|\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right|\right) \tag{1.25}
\end{equation*}
$$

Here the space-time coordinates are measured by an observer O with origin.
Then consider an observer O^{\prime} moving with constant velocity - u relative to O. The "new" coordinates (those measured by O^{\prime}) are related to the old coordinates via a Galilean boost

$$
\begin{align*}
\boldsymbol{r}_{a} \rightarrow \boldsymbol{r}_{a}^{\prime} & =\boldsymbol{r}_{a}+\boldsymbol{u} t \tag{1.26}\\
t \rightarrow t^{\prime} & =t \tag{1.27}
\end{align*}
$$

The potential which only depends on $\boldsymbol{r}_{a}-\boldsymbol{r}_{b}$ is independent of the shift. The observer measures

$$
\begin{align*}
\boldsymbol{v}_{a} \rightarrow \boldsymbol{v}_{a}^{\prime} & =\boldsymbol{v}_{a}+\boldsymbol{u} \tag{1.28}\\
\boldsymbol{p}_{a} \rightarrow \boldsymbol{p}_{a}^{\prime} & =\boldsymbol{p}_{a}+m_{a} \boldsymbol{u} \tag{1.29}
\end{align*}
$$

The equations of motion for observer O^{\prime} are unchanged

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{a}^{\prime}}{d t^{\prime}}=\boldsymbol{F}_{a}^{\prime} \quad \boldsymbol{F}^{\prime} \equiv \nabla_{\boldsymbol{r}^{\prime}} U\left(\left|\boldsymbol{r}_{a}^{\prime}-\boldsymbol{r}_{b}^{\prime}\right|\right) \tag{1.30}
\end{equation*}
$$

1.2 The action and the Euler Lagrange equations

- The action

$$
\begin{equation*}
S[\boldsymbol{r}(t)]=\int_{t_{1}}^{t_{2}} d t L(\boldsymbol{r}, \dot{\boldsymbol{r}}, t) \tag{1.31}
\end{equation*}
$$

takes an arbitrary path $\boldsymbol{r}(t)$ (which may not satisfy the EOM) and returns a number. It is called a functional.

- The action principle says that the path $\boldsymbol{r}(t)$ that satisfies the EOM (sometimes called the the classical or "on-shell" path) is an extremum the action". This means that if we replace the on-shell path $\boldsymbol{r}(t)$ with

$$
\begin{equation*}
\boldsymbol{r}(t) \rightarrow \boldsymbol{r}(t)+\delta \boldsymbol{r}(t) \tag{1.32}
\end{equation*}
$$

for an arbitrary (small) function $\delta \boldsymbol{r}(t)$ that vanishes near t_{1} and t_{2} then the action is unchanged

$$
\begin{equation*}
S[\boldsymbol{r}(t)+\delta \boldsymbol{r}(t)]=S[\boldsymbol{r}(t)] \quad \text { when } \boldsymbol{r}(t) \text { is "on-shell", i.e. satisfies the EOM } \tag{1.33}
\end{equation*}
$$

- Generally we define

$$
\begin{equation*}
\delta S[\boldsymbol{r}(t), \delta \boldsymbol{r}(t)] \equiv S[\boldsymbol{r}(t)+\delta \boldsymbol{r}(t)]-S[\boldsymbol{r}(t)] \tag{1.34}
\end{equation*}
$$

and note that $\delta S[\boldsymbol{r}, \delta \boldsymbol{r}]$ depends on both the path and the variation. The requirement that $\delta S=0$ determines the equation of motion. You should be able to prove that when $\delta S=0$ for an arbitrary variation, the equations of motion are (in 1 d)

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=\frac{\partial L}{\partial x} \tag{1.35}
\end{equation*}
$$

- For a general set of coordinates $q^{A}=1 \ldots N$ the equations of motion take the same form:

$$
\begin{equation*}
\delta S \equiv S[q(t)+\delta q(t)]-S[q(t)]=0 \tag{1.36}
\end{equation*}
$$

to first order in an arbitrary $\delta q(t)$. This leads to N equations of motion

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{A}}=\frac{\partial L}{\partial q^{A}} \quad A=1 \ldots N \tag{1.37}
\end{equation*}
$$

we call

$$
\begin{align*}
p_{A} & =\frac{\partial L}{\partial \dot{q}^{A}} \equiv \text { the canonical momentum conjugate to } q^{A} \tag{1.38}\\
F_{A} & =\frac{\partial L}{\partial q^{A}} \equiv \text { the generalized force associated with } q^{A} \tag{1.39}
\end{align*}
$$

- If a coordinate q^{A} does not appear in the Lagrangian (but of course \dot{q}^{A} does or it wouldn't appear at all), the variable is called cyclic. For a cyclic coordinate we have from the Euler Lagrange equations (Eq. (1.37))

$$
\begin{equation*}
\frac{d p_{A}}{d t}=0 \tag{1.40}
\end{equation*}
$$

i.e. p_{A} is a constant of the motion.

The hamiltonian function

- The hamiltonian (or energy) function (sometimes called the "first integral") is

$$
\begin{equation*}
h(q, \dot{q}, t)=p \dot{q}-L(q, \dot{q}, t)=\frac{\partial L}{\partial \dot{q}} \dot{q}-L(q, \dot{q}, t) \tag{1.41}
\end{equation*}
$$

and obey the equation of motion

$$
\begin{equation*}
\frac{d h}{d t}=-\frac{\partial L}{\partial t} \tag{1.42}
\end{equation*}
$$

$h(q, \dot{q}, t)$ is therefore constant if L does not depend explicitly on time.

[^0]- If more then one coordinate is involved then

$$
\begin{align*}
h\left(q^{A}, \dot{q}^{A}, t\right) & =\sum_{A} p_{A} \dot{q}^{A}-L \tag{1.43}\\
& =\frac{\partial L}{\partial \dot{q}^{A}} \dot{q}^{A}-L \tag{1.44}
\end{align*}
$$

where we have and will from now on follow the summation convention, where repeated indices are summed over.

- We will distinguish the hamiltonian function $h(q, \dot{q}, t)$, which is a function of q, \dot{q}, and t, from the Hamiltonian $H(p, q, t)$ which is a function of q and p and t through the Legendre transform (more later). Thus $p_{A}(q, \dot{q}, t)$ in the hamiltonian function (Eq. (1.43)) is a function of the q and the \dot{q}, while in the Hamiltonian the \dot{q} is a function of q and p.
- For a rather general Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} a_{i j}(q) \dot{q}^{i} \dot{q}^{j}+b_{i}(q) \dot{q}^{i}-U(q) \tag{1.45}
\end{equation*}
$$

(which is the form of the Lagrangian for a particle in a magnetic field or gravity) the hamiltonian function is

$$
\begin{equation*}
h(\dot{q}, q, t)=\frac{1}{2} a_{i j}(q) \dot{q}^{i} \dot{q}^{j}+U(q) \tag{1.46}
\end{equation*}
$$

The fact that the hamiltonian function is independent of b_{i} is closely related to the fact that magnetic fields do no work.

The period of one dimensional motion

- For one dimensional Lagrangian's of the form

$$
\begin{equation*}
L=\frac{1}{2} m(q) \dot{q}^{2}-V_{\mathrm{eff}}(q) \tag{1.47}
\end{equation*}
$$

The first integral is

$$
\begin{equation*}
E=\frac{1}{2} m(q) \dot{q}^{2}+V_{\mathrm{eff}}(q) \tag{1.48}
\end{equation*}
$$

You should be able to show that the this first integral equation can be used to determine $q(t)$ implicitly. Integrating from $\left(t_{0}, q_{0}\right)$ to $(t, q(t))$ yields

$$
\begin{equation*}
\pm \int_{q_{0}}^{q(t)} d q\left(\frac{m(q)}{2\left(E-V_{\mathrm{eff}}(q)\right)}\right)^{1 / 2}=t-t_{0} \tag{1.49}
\end{equation*}
$$

which, when inverted, gives $q(t)$. The plus sign is when q is increasing in time, while the minus sign is when $q(t)$ is decreasing in time

- In a typical case the potential $V_{\text {eff }}(q)$ and energy E is shown below

For the specified energy, the motion is unbounded for $q>q_{c}$, and oscillates between when $q_{A}<q<q_{B}$. q_{A}, q_{B} and q_{C} are called turning points. The period $\mathcal{T}(E)$ is the time it takes to go from q_{A} to q_{B} and back. Thus half a period $\mathcal{T}(E) / 2$ is the time it takes to go from q_{A} to q_{B} or

$$
\begin{equation*}
\frac{\mathcal{T}(E)}{2}=\int_{q_{A}}^{q_{B}} d q\left(\frac{m(q)}{2\left(E-V_{\mathrm{eff}}(q)\right)}\right)^{1 / 2} \tag{1.50}
\end{equation*}
$$

1.3 The Hamiltonian Formalism, the Routhian, and the Legendre Transform The Hamiltonian formalism: basic version

- Let the Lagrangian be a convex function of the velocity $v_{q} \equiv \dot{q}$. In one dimension this means that the momentum $p=\partial L / \partial v_{q}$ is an increasing function of the velocity $v_{q} \equiv \dot{q}$, i.e $\partial^{2} L / \partial \dot{q}^{2}>0$. This means there is one value of the velocity for given momentum $p, \dot{q}(p)$. Clearly $L \propto v^{2}$ is convex.

In higher dimensions we require that $\partial^{2} L / \partial \dot{q}^{i} \partial \dot{q}^{j}$ is a positive definite matrix. This means that for a given value of p_{i} there is a unique value of the velocity vector $v_{q}^{i} \equiv \dot{q}^{i}(p)$ at fixed q.

- With convex function $L(\dot{q})$ a Legendre transform useful, and trades the velocity dependence of the Lagrangian dependence for the momentum dependence p of the Hamiltonian

First note

$$
\begin{equation*}
d L=p d \dot{q}+\underbrace{\frac{\partial L}{\partial q}+\frac{\partial L}{\partial t} d t}_{\text {"spectators" }} \tag{1.51}
\end{equation*}
$$

We can trade the $d \dot{q}$ for $d p$ by looking at $L-p \dot{q}$, or, as is conventional, minus this quantity. Thus we define

$$
\begin{equation*}
H(p, q, t)=p \dot{q}(p)-L(\dot{q}(p), q, t) \tag{1.52}
\end{equation*}
$$

where $\dot{q}(p)$ is determined from p at fixed q and t, i.e. we must invert the relation

$$
\begin{equation*}
p=\frac{\partial L(\dot{q}, q, t)}{\partial \dot{q}} \Rightarrow \text { determines } \dot{q}(p) \tag{1.53}
\end{equation*}
$$

We have (do it yourself!)

$$
\begin{equation*}
d H(p, q, t)=\dot{q} d p-(\underbrace{\frac{\partial L}{\partial q} d q+\frac{\partial L}{\partial t} d t}_{\text {"spectators" }}) . \tag{1.54}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{\partial H}{\partial p}=\dot{q} \quad \frac{\partial H}{\partial q}=-\frac{\partial L}{\partial q} \quad \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} \tag{1.55}
\end{equation*}
$$

were L is a function \dot{q} and H is a function of the corresponding p. You should be able to show that these results (together with the Euler-Lagrange equations) yield Hamilton's equations of motion:

$$
\begin{align*}
& \frac{d q}{d t}=\frac{\partial H(q, p, t)}{\partial p} \tag{1.56}\\
& \frac{d p}{d t}=-\frac{\partial H(q, p, t)}{\partial q} \tag{1.57}
\end{align*}
$$

- When more variables are around then we simply sum over the $p_{i} \dot{q}^{i}$ term

$$
\begin{equation*}
H(p, q, t)=\sum_{i} p_{i} \dot{q}^{i}(p)-L(\dot{q}(p), q, t) \tag{1.58}
\end{equation*}
$$

and the equation of motion are

$$
\begin{align*}
\frac{d q^{i}}{d t} & =\frac{\partial H(q, p, t)}{\partial p_{i}} \tag{1.59}\\
\frac{d p_{i}}{d t} & =-\frac{\partial H(q, p, t)}{\partial q^{i}} \tag{1.60}
\end{align*}
$$

- The total derivative of the Hamiltonian satisfies

$$
\begin{equation*}
\frac{d H}{d t}=\frac{\partial H}{\partial t} \tag{1.61}
\end{equation*}
$$

so that if H is not an explicitly function of time then it is constant.

- For a (rather general) Lagrangian of the form

$$
\begin{equation*}
L=\frac{1}{2} a_{i j}(q) \dot{q}^{i} \dot{q}^{j}+b_{i}(q) \dot{q}^{i}-U(q) \tag{1.62}
\end{equation*}
$$

the momenta and velocities are related via

$$
\begin{equation*}
p_{i}=a_{i j} \dot{q}^{j}+b_{i}, \quad \dot{q}^{i}=\left(a^{-1}\right)^{i j}\left(p_{j}-b_{j}\right) . \tag{1.63}
\end{equation*}
$$

The Hamiltonian is

$$
\begin{equation*}
H(p, q, t)=\frac{1}{2}\left(a^{-1}\right)^{i j}\left(p_{i}-b_{i}\right)\left(p_{j}-b_{j}\right)+U(q) . \tag{1.64}
\end{equation*}
$$

This should be compared to the hamiltonian function in (1.46). The Hamiltonian is a function of the b_{i}, while the hamiltonian function is not. The Hamiltonian and hamiltonian function return the same value at corresponding points where $\dot{q}=\dot{q}(p)$, but have different functional forms.

The action principle

- The Hamiltonian can be used in the action principle to determine the equation of motion. The action takes a path in p, q space $\left(p_{i}(t), q^{i}(t)\right)$ and returns a number

$$
\begin{equation*}
S[p(t), q(t), t]=\int \mathrm{d} t\left(p_{i} \dot{q}^{i}-H(p, q, t)\right) \tag{1.65}
\end{equation*}
$$

We note $p_{i} \dot{q}^{i}-H=L$ at corresponding points. Varying the action with $p_{i}(t)$ and $q^{i}(t)$ separately (keeping the ends fixed) gives the Hamiltonian equation of motion. By doing this variation you should be able to show that

$$
\begin{align*}
\frac{d q^{i}}{d t} & =\frac{\partial H}{\partial p_{i}} \tag{1.66}\\
\frac{d p_{i}}{d t} & =-\frac{\partial H}{\partial q^{i}} \tag{1.67}
\end{align*}
$$

The Routhian

- It is often convenient to Legendre transform with respect to some of the coordinates. (This is usually convenient for the cyclic coordinates).
Suppose we have two coordinates x and y, with Lagrangian $L(\dot{x}, x, \dot{y}, y)$. If we Legendre transform with respect to \dot{x} (replacing it with p_{x}), but leave \dot{y} alone:

$$
\begin{equation*}
R\left(p_{x}, x, \dot{y}, y\right) \equiv p_{x} \dot{x}\left(p_{x}\right)-L\left(\dot{x}\left(p_{x}\right), x, \dot{y}, y\right) \tag{1.68}
\end{equation*}
$$

then R (known as the Routhian) acts like a Hamiltonian for $\left(p_{x}, x\right)$, but a Lagrangian ${ }^{2}$ for (\dot{y}, y). You should be able to show that

$$
\begin{align*}
\frac{d x}{d t} & =\frac{\partial R}{\partial p_{x}} \tag{1.69}\\
\frac{d p_{x}}{d t} & =-\frac{\partial R}{\partial x} \tag{1.70}\\
\frac{d}{d t}\left(\frac{\partial R}{\partial \dot{y}}\right) & =\frac{\partial R}{\partial y} \tag{1.71}
\end{align*}
$$

Here, since the variables in R are p_{x}, x, \dot{y} and y, the partial derivative, $\partial R / \partial y$, means, $(\partial R / \partial y)_{p_{x}}$. In the Lagrangian setup $L(\dot{x}, x, \dot{y}, y)$, with variables \dot{x}, x, \dot{y} and y, one would have $(\partial L / \partial y)_{\dot{x}}$.

[^1]
The Legendre Transform as extremization in the presence of an external bias (force)

- Consider the convex function $U(x)$. Its derivative is ${ }^{3}$

$$
\begin{equation*}
d U=f_{0}(x) d x \tag{1.72}
\end{equation*}
$$

Then we define ${ }^{4}$

$$
\begin{equation*}
\hat{U}(x, f)=f x-U(x) \tag{1.73}
\end{equation*}
$$

Then the Legendre transform is the extremum (maximum or minimum) of $\hat{U}(x, f)$ for fixed f, i.e.

$$
\begin{equation*}
V(f)=\operatorname{extrm}_{x}(f x-U(x)) \tag{1.74}
\end{equation*}
$$

This means that we are to change x until we reach the value $x(f)$ where \hat{U} is a maximum or minimum. The value of \hat{U} at this point is $V(f)$. By differentiation, the extremal point is when $f=d U / d x=f_{0}(x)$, which must be inverted to determine $x(f)$. Then $V(f)=f x(f)-U(x(f))$.

- We have

$$
\begin{equation*}
d U=f(x) d x \quad \text { and } \quad d V=x(f) d f \tag{1.75}
\end{equation*}
$$

and a relation between the second derivatives

$$
\begin{equation*}
\frac{d^{2} U}{d x^{2}} \frac{d^{2} V}{d f^{2}}=1 \tag{1.76}
\end{equation*}
$$

- Then inverse Legendre transform returns the back the potential

$$
\begin{equation*}
U(x)=\operatorname{extrm}_{f}(f x-V(f)) \tag{1.77}
\end{equation*}
$$

which you should prove for yourself.

- For more degrees of freedom, take $U\left(x_{1}, x_{2}\right)$ for example, the procedure works similarly. We define

$$
\begin{equation*}
V\left(f_{1}, f_{2}\right)=\operatorname{extrm}_{x_{1}, x_{2}}\left(f_{1} x^{1}+f_{2} x^{2}-U(x)\right) \tag{1.78}
\end{equation*}
$$

Then

$$
\begin{equation*}
d U=f_{1} d x^{1}+f_{2} d x^{2} \quad \text { and } d V=x^{1} d f_{1}+x^{2} d f_{2} \tag{1.79}
\end{equation*}
$$

Note that the matrices of second derivatives

$$
\begin{equation*}
U_{i j} \equiv \frac{\partial^{2} U}{\partial x^{i} \partial x^{j}} \quad V^{i j} \equiv \frac{\partial^{2} V}{\partial f_{i} \partial f_{j}} \tag{1.80}
\end{equation*}
$$

are inverses of each

$$
\begin{equation*}
V^{i \ell} U_{\ell j}=\delta_{j}^{i} \tag{1.81}
\end{equation*}
$$

[^2]
1.4 Motion in a Central Potential

Central potentials $U(r)$ and the Kepler Problem

- We have two bodies with m_{1} and \boldsymbol{r}_{1} and m_{2} and \boldsymbol{r}_{2}, and generally take \boldsymbol{r}_{1} to be the "earth" and \boldsymbol{r}_{2} and sun. We first switch to center of mass \boldsymbol{R} and relative coordinates \boldsymbol{r}

$$
\begin{align*}
\boldsymbol{R} & =\frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{M}, \tag{1.82}\\
\boldsymbol{r} & =\boldsymbol{r}_{1}-\boldsymbol{r}_{2} \tag{1.83}
\end{align*}
$$

with $M=m_{1}+m_{2}$. We have the kinetic energy

$$
\begin{equation*}
T=\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2} \tag{1.84}
\end{equation*}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass, and thus the Lagrangian is

$$
\begin{equation*}
L=\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2}-U(|\boldsymbol{r}|) \tag{1.85}
\end{equation*}
$$

where $U(|\boldsymbol{r}|)$ is the potential energy of the two particles.

- The overall center of mass motion does not change the orbital dynamics. We can choose $\boldsymbol{R}=\dot{\boldsymbol{R}}=0$, so that the angular momentum of the center of mass is zero. Then the internal angular momentum is

$$
\begin{equation*}
\boldsymbol{L}=\mu \boldsymbol{r} \times \dot{\boldsymbol{r}} \tag{1.86}
\end{equation*}
$$

\boldsymbol{L} can be chosen to lie along the z axis so that \boldsymbol{r} lies in the x, y plane

$$
\begin{equation*}
\boldsymbol{r}=r(\cos \phi, \sin \phi, 0) \tag{1.87}
\end{equation*}
$$

The Lagrangian neglecting the center of mass motion is

$$
\begin{equation*}
L=\frac{1}{2} \mu\left(r^{2}+r^{2} \dot{\phi}^{2}\right)-U(r) \tag{1.88}
\end{equation*}
$$

- There are two integrals of motion for the motion in the effective potential:

$$
\begin{align*}
\ell & =\mu r^{2} \dot{\phi} \tag{1.89}\\
E & =\frac{1}{2} \mu \dot{r}^{2}+V_{\text {eff }}(r, \ell) \tag{1.90}
\end{align*}
$$

The effective particle with mass μ moves in the effective potential is

$$
\begin{equation*}
V_{\mathrm{eff}}(r, \ell)=\frac{\ell^{2}}{2 \mu r^{2}}+U(r) . \tag{1.91}
\end{equation*}
$$

Given the integrals of motion E and ℓ it is easy to determine $d \phi / d$ and $d r / d t$. From there it is straightforward to find an equation for $d r / d \phi=\dot{r} / \dot{\phi}$. Integrating $d r / d \phi$ gives the orbit for $r(\phi)$. This integral from $\left(r_{1}, \phi_{1}\right)$ to (r, ϕ) is

$$
\begin{equation*}
\phi-\phi_{1}=\frac{\ell}{\sqrt{2 \mu}} \int_{r_{1}}^{r} \frac{d r / r^{2}}{\sqrt{E-V_{\text {eff }}(r, \ell)}} \tag{1.92}
\end{equation*}
$$

for an arbitrary potential $U(r)$.

- For the coulomb potential $U=-k / r$, Eq. (1.92) for $r(\phi)$ can be integrated by making the "conformal" substitution

$$
\begin{equation*}
u \equiv \frac{1}{r} \quad d u=\frac{d r}{r^{2}}, \tag{1.93}
\end{equation*}
$$

Figure 1.1:
leading to the equation of an ellipse:

$$
\begin{equation*}
\frac{1}{r}=\frac{1}{r_{0}}(1+e \cos (\phi)) . \tag{1.94}
\end{equation*}
$$

r_{0} is known as the lattice rectum (see figure for geometric meaning), and e is known as the eccentricity of the ellipse, which is a measure of how much the orbit deviates from a circle. A convenient summary of the elliptic geometry is given in Fig. 1.1
The parameters of the ellipse r_{0} and e are determined by the integrals of motion, E and ℓ. The lattice rectum is determined by the angular momentum, $r_{0}=\ell^{2} / \mu k$. The eccentricity e is determined by the excitation energy above the minimum of $V_{\text {eff }}$ (with fixed ℓ). More explicitly $e=\sqrt{1+E / \epsilon_{0}}$, with $\epsilon_{0}=\ell^{2} / 2 \mu r_{0}^{2}$. When the energy of the orbit is at its minimum, $E=V_{\min }=-\epsilon_{0}$, then the eccentricity is zero and the radius is constant, i.e. the orbit is circular.

- The Coulomb potential has a characteristic scale $r_{0} \sim \ell^{2} / \mu k$ when the potential k / r_{0} and kinetic $\ell^{2} / \mu r_{0}^{2}$ are the same order of magnitude. Indeed, for a circular orbit of radius r_{0}, one shows by freshman physics that the radius is determined by the angular momentum, $r_{0}=\ell^{2} / \mu k$. For such a circular orbits the kinetic energy is $\epsilon_{0} \equiv \ell^{2} / 2 \mu r_{0}$ and is minus-half the potential $U=-k / r_{0}=-2 \epsilon_{0}$. The total energy (kinetic+potential) is $E=-\epsilon_{0}$ where

$$
\begin{equation*}
\epsilon_{0} \equiv \frac{\ell^{2}}{2 \mu r_{0}^{2}}=\frac{k}{2 r_{0}} \tag{1.95}
\end{equation*}
$$

which explains the notation for the parameters in the previous item.

- For the Newton potential $U=-k / r$ and the spherical harmonic oscillator $U=\frac{1}{2} k r^{2}$ the orbits are closed (Bertrand's theorem). For no other central potentials are the orbits closed. The closed orbits are a consequence of an additional symmetry which we will discuss later.

Cross sections and scattering

- When considering the scattering problem we are interested in computing the scattering angle θ (the angle of deflection) for given energy E and impact parameter b. Here the impact parameter b is the transverse distance at large r from the target and is another way to record the angular momentum. At larger r the velocity is constant, $E=\frac{1}{2} m v^{2}$, and the angular momentum is

$$
\begin{equation*}
\ell=m v r \sin \theta=m v b=\sqrt{2 m E} b \tag{1.96}
\end{equation*}
$$

- The scattering angle $\theta(b)$ is shown below:

A particle comes in with impact parameters b (or angular momentum ℓ) and energy E, and is deflected by angle $\theta(b, E)$. From our mechanical perspective we find it easiest to compute the change in the angle ϕ as the particle propagates from its distance of closest approach $r_{\text {min }}$ up to infinity. This is (the second) angle ψ in the figure above. It is related to $\theta(b, E)$ by simple geometry.

$$
\begin{equation*}
\theta(b)=\pi-2 \psi . \tag{1.97}
\end{equation*}
$$

We have from Eq. (1.92)

$$
\begin{equation*}
\Delta \phi=\psi=\frac{\ell}{\sqrt{2 m}} \int_{r_{\min }}^{\infty} \frac{d r / r^{2}}{\left(E-V_{\mathrm{eff}}(r)\right)^{1 / 2}} \tag{1.98}
\end{equation*}
$$

For the Coulomb problem $U=k / r$ this integration is straightforward with the substitution $u=1 / r$, and yields $\tan (\psi)$ and since $\psi=\pi / 2-\theta / 2$

$$
\begin{equation*}
\cot (\theta / 2)=\frac{2 E b}{k} \tag{1.99}
\end{equation*}
$$

- The scattering problem is usually phrased in terms of cross section:
(i) Consider a beam of particles of luminosity $\mathscr{L} . \mathscr{L}$ is the number of particles crossing the target per area per time, and is also called the incident flux or intensity.
(ii) The number of incoming particles which scatter per time $d \Gamma$ with impact parameter between b and $d b$ is $d \Gamma=\mathscr{L} 2 \pi b|d b|$. We put absolute values because we think of $d b$ as an positive interval.
(iii) The number of incoming particles per time (or rate $d \Gamma$) which then end up at in ring of solid angle $d \Omega=2 \pi \sin (\theta)|d \theta|$ per time is

$$
\begin{equation*}
d \Gamma=\mathscr{L} \frac{b}{\sin \theta} \frac{|d b|}{|d \theta|} d \Omega \tag{1.100}
\end{equation*}
$$

So the scattering rate per solid angle is

$$
\begin{equation*}
\frac{d \Gamma}{d \Omega}=\mathscr{L} \frac{b}{\sin \theta} \frac{|d b|}{|d \theta|} \tag{1.101}
\end{equation*}
$$

The cross section is by definition the scattering rate divided by the incident flux

$$
\begin{equation*}
\frac{d \sigma}{d \Omega} \equiv \frac{1}{\mathscr{L}} \frac{d \Gamma}{d \Omega}=\frac{b}{\sin \theta}\left|\frac{d b}{d \theta}\right| . \tag{1.102}
\end{equation*}
$$

(iv) The cross section has units of area and gives a measure of the effective size of the target. It is usually measured in barns, 1 barn $=10^{-24} \mathrm{~cm}^{2}$.

- For the Coulomb problem, we can different $d \theta / d b$ (Eq. (1.99)) and use it in Eq. (1.102) to determine the Rutherford cross section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{k}{4 E}\right)^{2} \frac{1}{\sin ^{4}(\theta / 2)} \sim \frac{1}{\theta^{4}}, \tag{1.103}
\end{equation*}
$$

which is inversely proportional to $1 / \theta^{4}$ at small angles.

1.5 Constraints

Lagrange multipliers

- First we considered minimizing $U(x, y)$ subject to a constraint $Q(x, y)=0$. We said that we should instead minimize

$$
\begin{equation*}
\hat{U}(x, y, \lambda)=U(x, y)-\lambda Q(x, y) . \tag{1.104}
\end{equation*}
$$

λ is known as a Lagrange multiplier ${ }^{5}$. This leads to the conditions

$$
\begin{equation*}
d \hat{U}(x, y)=\left(\frac{\partial U}{\partial x}-\lambda \frac{\partial Q}{\partial x}\right) d x+\left(\frac{\partial U}{\partial y}-\lambda \frac{\partial Q}{\partial y}\right) d y-Q d \lambda=0 \tag{1.105}
\end{equation*}
$$

where the terms in front of $d x, d y$, and $d \lambda$ should be set to zero. We explained that Q can be thought of as a generalized coordinate, and λ is a generalized force conjugate to Q. This is just like adding an external force. For instance if I have a potential $U(x, y)$ and add an external force f in the x direction then the new potential is

$$
\begin{equation*}
\hat{U}(x, y, f)=U(x, y)-f x . \tag{1.106}
\end{equation*}
$$

The forces of constraint in the x and y directions are

$$
\begin{align*}
& F_{x}=\lambda \partial_{x} Q, \tag{1.107}\\
& F_{y}=\lambda \partial_{y} Q . \tag{1.108}
\end{align*}
$$

- The setup easily generalizes to more coordinates and more constraints. For coordinates x^{A} and constraints $Q^{\alpha}\left(x^{A}\right)$ with $\alpha=1 \ldots m$, if we want to minimize $U\left(x^{A}\right)$ subject to these constraints, we instead extremize

$$
\begin{equation*}
\hat{U}\left(x^{A}\right)=U\left(x^{A}\right)-\lambda_{\alpha} Q^{\alpha}\left(x^{A}\right) \tag{1.109}
\end{equation*}
$$

requiring that $d \hat{U}=0$, i.e. require

$$
\begin{align*}
& \frac{\partial \hat{U}}{\partial x^{A}}=0 \tag{1.110}\\
& \frac{\partial \hat{U}}{\partial \lambda_{\alpha}}=0 \tag{1.111}
\end{align*}
$$

The forces of constraint in the x^{A} direction are

$$
\begin{equation*}
F_{A}=\lambda_{\alpha} \frac{\partial Q^{\alpha}}{\partial x^{A}} \tag{1.112}
\end{equation*}
$$

Newton's Laws and Lagrange with constraints

- Consider Newton's Laws for particles with positions \boldsymbol{r}_{a}. For simplicity consider just one constraint.

$$
\begin{equation*}
Q\left(\boldsymbol{r}_{a}\right)=0 \tag{1.113}
\end{equation*}
$$

Then

$$
\begin{equation*}
d Q=\nabla_{\boldsymbol{r}_{a}} Q \cdot d \boldsymbol{r}_{a}=0 \tag{1.114}
\end{equation*}
$$

The forces of constraints \boldsymbol{F}_{a}^{C} do no work

$$
\begin{equation*}
\boldsymbol{F}_{a}^{C} \cdot d \boldsymbol{r}^{a}=0 \tag{1.115}
\end{equation*}
$$

[^3]Thus, we make take \boldsymbol{F}_{a}^{C} to be proportional to the gradient of Q

$$
\begin{equation*}
\boldsymbol{F}_{a}^{C}=\lambda \nabla_{\boldsymbol{r}_{a}} Q \tag{1.116}
\end{equation*}
$$

Then Newton's Laws read

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{a}}{d t}=\boldsymbol{F}_{a}^{\mathrm{ext}}+\lambda \nabla_{\boldsymbol{r}_{a}} Q \tag{1.117}
\end{equation*}
$$

Then Newton's Law $(\boldsymbol{F}=m \boldsymbol{a})$ and the constraint, determine the accelerations of the particles and the magnitude of the forces of constraint, i.e. λ.

- You should do some simple problems on Attwood's machines (see below) to convice yourself that we are always solving Eq. (1.117) when doing Freshmann physics problems.
- In the Lagrangian formalism we add some lagrange multipliers to enforce the constraints. Instead of extremizing $L\left(\dot{\boldsymbol{r}}_{a}, \boldsymbol{r}_{a}\right)$, one extremizes $\hat{L}\left(\dot{\boldsymbol{r}}_{a}, \boldsymbol{r}_{a}, \lambda\right)=L+\lambda Q$, where λ is like an extra coordinate. The Euler-Lagrange equations for \hat{L} are ${ }^{6}$

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial \hat{L}}{\partial \dot{\boldsymbol{r}}_{a}}\right) & =\frac{\partial \hat{L}}{\partial \boldsymbol{r}_{a}} \tag{1.120}\\
0 & =Q \tag{1.121}
\end{align*}
$$

- If there are more constraints Q^{α}, simply make the replacement $\lambda Q \rightarrow \lambda_{\alpha} Q^{\alpha}$ in the lagrangian formalism. In the Newtonian formalism the force of constraint on the a-th particle is

$$
\begin{equation*}
\boldsymbol{F}_{a}=\lambda_{\alpha} \nabla_{\boldsymbol{r}_{a}} Q^{\alpha} . \tag{1.122}
\end{equation*}
$$

- Attwood machine. Consider two masses m_{1} and m_{2} hanging over a massless pulley (you know the problem!). We have two coordinates z_{1} and z_{2} where z_{1} and z_{2} are the distances below the pulley (increasing z means further down). The constraint is

$$
\begin{equation*}
Q=z_{1}+z_{2}-L \tag{1.123}
\end{equation*}
$$

The hatted Lagrangian is

$$
\begin{equation*}
\hat{L}=\frac{1}{2} m_{1} \dot{z}_{1}^{2}+\frac{1}{2} m_{2} \dot{z}_{2}^{2}+m_{1} g z_{1}+m_{2} g g z_{2}+\lambda\left(z_{1}+z_{2}-L\right) \tag{1.124}
\end{equation*}
$$

Newton's or Lagranges' equation of motion are

$$
\begin{align*}
& m_{1} a_{1}=m_{1} g+\lambda \tag{1.125}\\
& m_{2} a_{2}=m_{2} g+\lambda \tag{1.126}\\
& z_{1}+z_{2}=L \tag{1.127}
\end{align*}
$$

Which are easily solved for a_{1}, a_{2} and λ, using that Eq. (1.127) implies by differentationg that $a_{1}+a_{2}=$ 0 . Solving these equations gives λ negative, i.e. the force is up not down. The case when the pulley has mass in the Lagrangian formalism is suggested as an excercise.

[^4]
[^0]: ${ }^{1}$ Sometimes for clarity we will put a bar, e.g., $\underline{\boldsymbol{r}}(t)$ to indicate that this path is on-shell, i.e. that it satisfies the EOM

[^1]: ${ }^{2}$ Technically it is actually $-R$ that is Lagrangian for \dot{y}, y, due to the fact we are subtracting L when making the Legendre transform in Eq. (1.68). Of course you could have done the following $R=L-p_{x} \dot{x}$, and then it would be a Lagrangian for y, but $-R$ would be the Hamiltonian for x.

[^2]: ${ }^{3}$ Think of $U(x)$ as the spring like potential that a particle feels. Then $f_{0}(x)$ is the external force that must be applied to the system so that the particle is in equilibrium at position x. The "internal" force that the potential gives is $f_{\text {internal }}(x)=-d U / d x$. This internal force must be counterbalanced by the applied force $f_{0}(x)=-f_{\text {internal }}(x)$.
 ${ }^{4}$ Referring to to the previous footnote $\hat{U}(x, f)$ is minus the potential in the presence of an applied external force f. In thermodynamics we would define the Legendre transform with $\hat{U}=U-f x$, but the overall sign leads only to minor differences. We follow the mechanics convention, $H=p v_{q}-L$, with regard to sign.

[^3]: ${ }^{5}$ The sign in front of λ is irrelevant. The choice here is so that λ corresponds to the generalized force in the direction of increasing Q, compare to Eq. (1.106). When we consider contraints in the Lagrangian, $L=T-U$, the multipliers will then come with a plus sign $\hat{L}=T-U+\lambda Q$.

[^4]: ${ }^{6}$ Perhaps we should write it a bit more explicitly. The coordinates of \boldsymbol{r}_{a} are r_{a}^{i} with $i=x, y, z$. We mean

 $$
 \begin{align*}
 \frac{d}{d t}\left(\frac{\partial \hat{L}}{\partial \dot{r}_{a}^{i}}\right) & =\frac{\partial \hat{L}}{\partial r_{a}^{i}} \tag{1.118}\\
 \frac{d}{d t}\left(\frac{\partial \hat{L}}{\partial \dot{\lambda}}\right) & =\frac{\partial \hat{L}}{\partial \lambda} \tag{1.119}
 \end{align*}
 $$

