
1 Basic Mechanics

1.1 Newtonian mechanics a brief review

Momentum and Center of Mass

• Newton’s equations of motion for a system of particles reads

dpa
dt

= Fa (1.1)

where a = 1 . . . N labels the particles. Here pa = mava. We usually divide up the forces on the a-the particle
into external forces acting on the system from outside, and internal forces acting between pairs of particles:

Fa = F ext
a

︸︷︷︸
external forces

+
∑

b6=a

Fab

︸ ︷︷ ︸
internal forces

. (1.2)

Here
Fab ≡ Force on particle a by b , (1.3)

and of course we have Newton’s equal and opposite rule

Fab = −Fba . (1.4)

• Summing over the particles we find (after using Eq. (1.4)) that the internal forces cancel and the total
change in momentum per time is the sum of external forces

dPtot

dt
= F ext

tot (1.5)

where Ptot =
∑
a pa and F ext

tot =
∑
a F

ext
a . If there are no external forces then Ptot is constant

• The velocity of the center of mass is

vcm =
Ptot

Mtot
=

1

Mtot

∑

a

mava . (1.6)

The position of the center of mass (relative to an origin O) is

Rcm =
1

Mtot

∑

a

mara . (1.7)

Angular momentum:

• Angular momentum is defined with respect to a specific origin O (i.e. ra depends on O) which is not
normally notated

`a,O ≡ `a ≡ ra × pa . (1.8)
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It evolves as
d`

dt
= ra × Fa (1.9)

• The total angular momentum Ltot =
∑
a `a changes due to the total external torque

dLtot

dt
= τ ext

tot , (1.10)

where τ ext
tot =

∑
a ra×F ext

a were we have generally assumed that the internal forces are radially directed
Fab ∝ (ra − rb)

• The angular momentum depends on the origin O. Writing the position of the particle relative to the
center of mass as ∆ra, i.e.

ra = Rcm + ∆ra , (1.11)

the angular momentum of the system about O is

LO = Rcm × Ptot

︸ ︷︷ ︸
Ang-mom of center of mass about O

+
∑

a

∆ra × pa
︸ ︷︷ ︸

Ang-mom about the cm

. (1.12)

Energy

• Energy conservation is derived by taking the dot product of v with dp/dt. We find that the change in
kinetic energy (on the a-the particle) equals the work done (on the a-particle).

1

2
mav

2
a(t)

∣∣∣∣
t2

t1

= Wa (1.13)

where the work is

Wa =

∫ ra(t2)

ra(t1)

Fa · dra (1.14)

• Potential Energy. For conservative forces the force can be written as (minus) the gradient of a scalar
function which we call the potential energy

Fa = −∇ra
U (1.15)

Consider the potential energy U12 between particle 1 and 2. Since the force is equal and opposite

F12 = −∇r1
U12(r1, r2) = +∇r2

U12(r1, r2) = −F21 (1.16)

and this is used to conclude that interaction potential between two particles is of the form

U int
12 = U(|r1 − r2|) (1.17)

Typically we divide up the potential into an external potential and the internal ones

U(ra) = U ext(ra) +
1

2

∑

ab,a6=b

U int
ab (ra, rb) (1.18)

The sum over the internal potentials comes with a factor of a half because the energy between particle-1
and particle-2 is counted twice in the sum, e.g. for just two particles

U int
12 (r1, r2) =

1

2
(U(|r1 − r2|) + U(|r2 − r1|)) . (1.19)
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• Energy. The total energy is

E =
∑

a

1

2
mav

2
a + U ext(ra) +

1

2

∑

ab,a6=b

U int
ab (ra, rb) (1.20)

and is constant if there are no non-conservative forces.

If there are non-conservative forces then

E(t2)− E(t1) = WNC (1.21)

where the work done by the non-conservative forces is WNC =
∑
a

∫
FNCa · dra

• It is convenient to measure velocities relative to the center of mass

va = vcm + ∆va (1.22)

where ∆va = ∆̇ra, then the kinetic energy

K =
1

2
Mtotv

2
cm

︸ ︷︷ ︸
KE of center-mass

+
∑

a

1

2
ma∆v2

a

︸ ︷︷ ︸
KE relative to center-mass

(1.23)

Galilean invariance:

• Consider newtons laws then for an isolated system of particles

dpa
dt

= Fa (1.24)

where Fa = −∇ra
U with

U =
1

2

∑

ab,a6=b

U int
ab (|ra − rb|) (1.25)

Here the space-time coordinates are measured by an observer O with origin.

Then consider an observer O′ moving with constant velocity −u relative to O. The “new” coordinates
(those measured by O′) are related to the old coordinates via a Galilean boost

ra → r′a =ra + ut (1.26)

t→ t′ =t (1.27)

The potential which only depends on ra − rb is independent of the shift. The observer measures

va → v′a =va + u (1.28)

pa → p′a =pa +mau (1.29)

The equations of motion for observer O′ are unchanged

dp′a
dt′

= F ′a F ′ ≡ ∇r′U(|r′a − r′b|) (1.30)
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1.2 The action and the Euler Lagrange equations

• The action

S[r(t)] =

∫ t2

t1

dtL(r, ṙ, t) (1.31)

takes an arbitrary path r(t) (which may not satisfy the EOM) and returns a number. It is called a functional.

• The action principle says that the path r(t) that satisfies the EOM (sometimes called the the classical
or “on-shell” path) is an extremum the action1. This means that if we replace the on-shell path r(t) with

r(t)→ r(t) + δr(t) (1.32)

for an arbitrary (small) function δr(t) that vanishes near t1 and t2 then the action is unchanged

S[r(t) + δr(t)] = S[r(t)] when r(t) is “on-shell”, i.e. satisfies the EOM (1.33)

• Generally we define
δS[r(t), δr(t)] ≡ S[r(t) + δr(t)]− S[r(t)] (1.34)

and note that δS[r, δr] depends on both the path and the variation. The requirement that δS = 0 determines
the equation of motion. You should be able to prove that when δS = 0 for an arbitrary variation, the
equations of motion are (in 1d)

d

dt

∂L

∂ẋ
=
∂L

∂x
(1.35)

• For a general set of coordinates qA = 1 . . . N the equations of motion take the same form:

δS ≡ S[q(t) + δq(t)]− S[q(t)] = 0 (1.36)

to first order in an arbitrary δq(t). This leads to N equations of motion

d

dt

∂L

∂q̇A
=

∂L

∂qA
A = 1 . . . N (1.37)

we call

pA =
∂L

∂q̇A
≡ the canonical momentum conjugate to qA (1.38)

FA =
∂L

∂qA
≡ the generalized force associated with qA (1.39)

• If a coordinate qA does not appear in the Lagrangian (but of course q̇A does or it wouldn’t appear
at all), the variable is called cyclic. For a cyclic coordinate we have from the Euler Lagrange equations
(Eq. (1.37))

dpA
dt

= 0 (1.40)

i.e. pA is a constant of the motion.

The hamiltonian function

• The hamiltonian (or energy) function (sometimes called the “first integral”) is

h(q, q̇, t) = pq̇ − L(q, q̇, t) =
∂L

∂q̇
q̇ − L(q, q̇, t) (1.41)

and obey the equation of motion
dh

dt
= −∂L

∂t
. (1.42)

h(q, q̇, t) is therefore constant if L does not depend explicitly on time.

1Sometimes for clarity we will put a bar, e.g., r(t) to indicate that this path is on-shell, i.e. that it satisfies the EOM
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• If more then one coordinate is involved then

h(qA, q̇A, t) =
∑

A

pAq̇
A − L (1.43)

=
∂L

∂q̇A
q̇A − L (1.44)

where we have and will from now on follow the summation convention, where repeated indices are
summed over.

• We will distinguish the hamiltonian function h(q, q̇, t), which is a function of q, q̇, and t, from the
Hamiltonian H(p, q, t) which is a function of q and p and t through the Legendre transform (more
later). Thus pA(q, q̇, t) in the hamiltonian function (Eq. (1.43)) is a function of the q and the q̇, while
in the Hamiltonian the q̇ is a function of q and p.

• For a rather general Lagrangian

L =
1

2
aij(q) q̇

iq̇j + bi(q)q̇
i − U(q) , (1.45)

(which is the form of the Lagrangian for a particle in a magnetic field or gravity) the hamiltonian
function is

h(q̇, q, t) =
1

2
aij(q) q̇

iq̇j + U(q) (1.46)

The fact that the hamiltonian function is independent of bi is closely related to the fact that magnetic
fields do no work.

The period of one dimensional motion

• For one dimensional Lagrangian’s of the form

L =
1

2
m(q) q̇2 − Veff(q) (1.47)

The first integral is

E =
1

2
m(q) q̇2 + Veff(q) (1.48)

You should be able to show that the this first integral equation can be used to determine q(t) implicitly.
Integrating from (t0, q0) to (t, q(t)) yields

±
∫ q(t)

q0

dq

(
m(q)

2(E − Veff(q))

)1/2

= t− t0 , (1.49)

which, when inverted, gives q(t). The plus sign is when q is increasing in time, while the minus sign is
when q(t) is decreasing in time

• In a typical case the potential Veff(q) and energy E is shown below
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For the specified energy, the motion is unbounded for q > qc, and oscillates between when qA < q < qB .
qA, qB and qC are called turning points. The period T (E) is the time it takes to go from qA to qB and
back. Thus half a period T (E)/2 is the time it takes to go from qA to qB or

T (E)

2
=

∫ qB

qA

dq

(
m(q)

2(E − Veff(q))

)1/2

. (1.50)
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1.3 The Hamiltonian Formalism, the Routhian, and the Legendre Transform

The Hamiltonian formalism: basic version

• Let the Lagrangian be a convex function of the velocity vq ≡ q̇. In one dimension this means that the
momentum p = ∂L/∂vq is an increasing function of the velocity vq ≡ q̇, i.e ∂2L/∂q̇2 > 0. This means
there is one value of the velocity for given momentum p, q̇(p). Clearly L ∝ v2 is convex.

In higher dimensions we require that ∂2L/∂q̇i∂q̇j is a positive definite matrix. This means that for a
given value of pi there is a unique value of the velocity vector viq ≡ q̇i(p) at fixed q.

• With convex function L(q̇) a Legendre transform useful, and trades the velocity dependence of the
Lagrangian dependence for the momentum dependence p of the Hamiltonian

First note

dL = p dq̇ +
∂L

∂q
+
∂L

∂t
dt

︸ ︷︷ ︸
“spectators”

(1.51)

We can trade the dq̇ for dp by looking at L− pq̇, or, as is conventional, minus this quantity. Thus we
define

H(p, q, t) = p q̇(p)− L(q̇(p), q, t) (1.52)

where q̇(p) is determined from p at fixed q and t, i.e. we must invert the relation

p =
∂L(q̇, q, t)

∂q̇
⇒ determines q̇(p) (1.53)

We have (do it yourself!)

dH(p, q, t) =q̇ dp− (
∂L

∂q
dq +

∂L

∂t
dt

︸ ︷︷ ︸
“spectators”

) . (1.54)

Thus we have
∂H

∂p
= q̇

∂H

∂q
= −∂L

∂q

∂H

∂t
= −∂L

∂t
(1.55)

were L is a function q̇ and H is a function of the corresponding p. You should be able to show that
these results (together with the Euler-Lagrange equations) yield Hamilton’s equations of motion:

dq

dt
=
∂H(q, p, t)

∂p
(1.56)

dp

dt
=− ∂H(q, p, t)

∂q
(1.57)

• When more variables are around then we simply sum over the piq̇
i term

H(p, q, t) =
∑

i

piq̇
i(p)− L(q̇(p), q, t) (1.58)

and the equation of motion are

dqi

dt
=
∂H(q, p, t)

∂pi
(1.59)

dpi
dt

=− ∂H(q, p, t)

∂qi
(1.60)
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• The total derivative of the Hamiltonian satisfies

dH

dt
=
∂H

∂t
(1.61)

so that if H is not an explicitly function of time then it is constant.

• For a (rather general) Lagrangian of the form

L =
1

2
aij(q)q̇

iq̇j + bi(q)q̇
i − U(q) , (1.62)

the momenta and velocities are related via

pi = aij q̇
j + bi , q̇i = (a−1)ij(pj − bj) . (1.63)

The Hamiltonian is

H(p, q, t) =
1

2
(a−1)ij(pi − bi)(pj − bj) + U(q) . (1.64)

This should be compared to the hamiltonian function in (1.46). The Hamiltonian is a function of the
bi, while the hamiltonian function is not. The Hamiltonian and hamiltonian function return the same
value at corresponding points where q̇ = q̇(p), but have different functional forms.

The action principle

• The Hamiltonian can be used in the action principle to determine the equation of motion. The action
takes a path in p, q space (pi(t), q

i(t)) and returns a number

S[p(t), q(t), t] =

∫
dt
(
pi q̇

i −H(p, q, t)
)

(1.65)

We note piq̇
i − H = L at corresponding points. Varying the action with pi(t) and qi(t) separately

(keeping the ends fixed) gives the Hamiltonian equation of motion. By doing this variation you should
be able to show that

dqi

dt
=
∂H

∂pi
, (1.66)

dpi
dt

=− ∂H

∂qi
. (1.67)

The Routhian

• It is often convenient to Legendre transform with respect to some of the coordinates. (This is usually
convenient for the cyclic coordinates).

Suppose we have two coordinates x and y, with Lagrangian L(ẋ, x, ẏ, y). If we Legendre transform
with respect to ẋ (replacing it with px), but leave ẏ alone:

R(px, x, ẏ, y) ≡ px ẋ(px)− L(ẋ(px), x, ẏ, y) , (1.68)

then R (known as the Routhian) acts like a Hamiltonian for (px, x), but a Lagrangian2 for (ẏ, y). You
should be able to show that

dx

dt
=
∂R

∂px
(1.69)

dpx
dt

=− ∂R

∂x
(1.70)

d

dt

(
∂R

∂ẏ

)
=
∂R

∂y
(1.71)

Here, since the variables in R are px, x, ẏ and y, the partial derivative, ∂R/∂y, means, (∂R/∂y)px . In
the Lagrangian setup L(ẋ, x, ẏ, y), with variables ẋ, x, ẏ and y, one would have (∂L/∂y)ẋ.

2Technically it is actually −R that is Lagrangian for ẏ, y, due to the fact we are subtracting L when making the Legendre
transform in Eq. (1.68). Of course you could have done the following R = L − pxẋ, and then it would be a Lagrangian for y,
but −R would be the Hamiltonian for x.
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The Legendre Transform as extremization in the presence of an external bias (force)

• Consider the convex function U(x). Its derivative is3

dU = f0(x) dx (1.72)

Then we define4

Û(x, f) = fx− U(x) . (1.73)

Then the Legendre transform is the extremum (maximum or minimum) of Û(x, f) for fixed f , i.e.

V (f) = extrmx (f x− U(x)) . (1.74)

This means that we are to change x until we reach the value x(f) where Û is a maximum or minimum.
The value of Û at this point is V (f). By differentiation, the extremal point is when f = dU/dx = f0(x),
which must be inverted to determine x(f). Then V (f) = fx(f)− U(x(f)).

• We have
dU = f(x) dx and dV = x(f) df (1.75)

and a relation between the second derivatives

d2U

dx2

d2V

df2
= 1 (1.76)

• Then inverse Legendre transform returns the back the potential

U(x) = extrmf (f x− V (f)) (1.77)

which you should prove for yourself.

• For more degrees of freedom, take U(x1, x2) for example, the procedure works similarly. We define

V (f1, f2) = extrmx1,x2

(
f1x

1 + f2x
2 − U(x)

)
(1.78)

Then
dU = f1 dx

1 + f2 dx
2 anddV = x1 df1 + x2 df2 (1.79)

Note that the matrices of second derivatives

Uij ≡
∂2U

∂xi∂xj
V ij ≡ ∂2V

∂fi∂fj
(1.80)

are inverses of each
V i`U`j = δij (1.81)

3Think of U(x) as the spring like potential that a particle feels. Then f0(x) is the external force that must be applied to the
system so that the particle is in equilibrium at position x. The “internal” force that the potential gives is finternal(x) = −dU/dx.
This internal force must be counterbalanced by the applied force f0(x) = −finternal(x).

4Referring to to the previous footnote Û(x, f) is minus the potential in the presence of an applied external force f . In

thermodynamics we would define the Legendre transform with Û = U − fx, but the overall sign leads only to minor differences.
We follow the mechanics convention, H = pvq − L, with regard to sign.
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1.4 Motion in a Central Potential

Central potentials U(r) and the Kepler Problem

• We have two bodies with m1 and r1 and m2 and r2, and generally take r1 to be the “earth” and r2

and sun. We first switch to center of mass R and relative coordinates r

R =
m1r1 +m2r2

M
, (1.82)

r =r1 − r2 . (1.83)

with M = m1 +m2. We have the kinetic energy

T =
1

2
MṘ2 +

1

2
µṙ2 (1.84)

where µ = m1m2/(m1 +m2) is the reduced mass, and thus the Lagrangian is

L =
1

2
MṘ2 +

1

2
µṙ2 − U(|r|) (1.85)

where U(|r|) is the potential energy of the two particles.

• The overall center of mass motion does not change the orbital dynamics. We can choose R = Ṙ = 0,
so that the angular momentum of the center of mass is zero. Then the internal angular momentum is

L =µr × ṙ (1.86)

L can be chosen to lie along the z axis so that r lies in the x, y plane

r = r (cosφ, sinφ, 0) (1.87)

The Lagrangian neglecting the center of mass motion is

L =
1

2
µ(r2 + r2φ̇2)− U(r) (1.88)

• There are two integrals of motion for the motion in the effective potential:

` =µr2φ̇ , (1.89)

E =
1

2
µṙ2 + Veff(r, `) . (1.90)

The effective particle with mass µ moves in the effective potential is

Veff(r, `) =
`2

2µr2
+ U(r) . (1.91)

Given the integrals of motion E and ` it is easy to determine dφ/d and dr/dt. From there it is
straightforward to find an equation for dr/dφ = ṙ/φ̇. Integrating dr/dφ gives the orbit for r(φ). This
integral from (r1, φ1) to (r, φ) is

φ− φ1 =
`√
2µ

∫ r

r1

dr/r2

√
E − Veff(r, `)

(1.92)

for an arbitrary potential U(r).

• For the coulomb potential U = −k/r, Eq. (1.92) for r(φ) can be integrated by making the “conformal”
substitution

u ≡ 1

r
du =

dr

r2
, (1.93)
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• Polar representation

1

r
=

1

r0
(1 + e cos(�))

(r cos(�), r sin(�))

rmax = r0/(1 � e)

b = r0/
p

1 � e2

a = r0/(1 � e2)

r0

PerihelionAphelion focus

x

y

• Area
A = ⇡ab

rmin = r0/(1 + e)

Figure 1.1:

leading to the equation of an ellipse:

1

r
=

1

r0
(1 + e cos(φ)) . (1.94)

r0 is known as the lattice rectum (see figure for geometric meaning), and e is known as the eccentricity
of the ellipse, which is a measure of how much the orbit deviates from a circle. A convenient summary
of the elliptic geometry is given in Fig. 1.1

The parameters of the ellipse r0 and e are determined by the integrals of motion, E and `. The lattice
rectum is determined by the angular momentum, r0 = `2/µk. The eccentricity e is determined by
the excitation energy above the minimum of Veff (with fixed `). More explicitly e =

√
1 + E/ε0, with

ε0 = `2/2µr2
0. When the energy of the orbit is at its minimum, E = Vmin = −ε0, then the eccentricity

is zero and the radius is constant, i.e. the orbit is circular.

• The Coulomb potential has a characteristic scale r0 ∼ `2/µk when the potential k/r0 and kinetic
`2/µr2

0 are the same order of magnitude. Indeed, for a circular orbit of radius r0, one shows by
freshman physics that the radius is determined by the angular momentum, r0 = `2/µk. For such a
circular orbits the kinetic energy is ε0 ≡ `2/2µr0 and is minus-half the potential U = −k/r0 = −2ε0.
The total energy (kinetic+potential) is E = −ε0 where

ε0 ≡
`2

2µr2
0

=
k

2r0
, (1.95)

which explains the notation for the parameters in the previous item.

• For the Newton potential U = −k/r and the spherical harmonic oscillator U = 1
2kr

2 the orbits are
closed (Bertrand’s theorem). For no other central potentials are the orbits closed. The closed orbits
are a consequence of an additional symmetry which we will discuss later.

Cross sections and scattering

• When considering the scattering problem we are interested in computing the scattering angle θ (the
angle of deflection) for given energy E and impact parameter b. Here the impact parameter b is the
transverse distance at large r from the target and is another way to record the angular momentum.
At larger r the velocity is constant, E = 1

2mv
2, and the angular momentum is

` = mvr sin θ = mvb =
√

2mEb (1.96)
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• The scattering angle θ(b) is shown below:

Scattering: 1

A particle comes in with impact parameters b (or angular momentum `) and energy E, and is deflected
by angle θ(b, E). From our mechanical perspective we find it easiest to compute the change in the
angle φ as the particle propagates from its distance of closest approach rmin up to infinity. This is (the
second) angle ψ in the figure above. It is related to θ(b, E) by simple geometry.

θ(b) = π − 2ψ . (1.97)

We have from Eq. (1.92)

∆φ = ψ =
`√
2m

∫ ∞

rmin

dr/r2

(E − Veff(r))1/2
. (1.98)

For the Coulomb problem U = k/r this integration is straightforward with the substitution u = 1/r,
and yields tan(ψ) and since ψ = π/2− θ/2

cot(θ/2) =
2Eb

k
. (1.99)

• The scattering problem is usually phrased in terms of cross section:

(i) Consider a beam of particles of luminosity L . L is the number of particles crossing the target
per area per time, and is also called the incident flux or intensity.

(ii) The number of incoming particles which scatter per time dΓ with impact parameter between b
and db is dΓ = L 2πb|db|. We put absolute values because we think of db as an positive interval.

(iii) The number of incoming particles per time (or rate dΓ) which then end up at in ring of solid
angle dΩ = 2π sin(θ)|dθ| per time is

dΓ = L
b

sin θ

|db|
|dθ| dΩ . (1.100)

So the scattering rate per solid angle is

dΓ

dΩ
= L

b

sin θ

|db|
|dθ| . (1.101)

The cross section is by definition the scattering rate divided by the incident flux

dσ

dΩ
≡ 1

L

dΓ

dΩ
=

b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ . (1.102)

(iv) The cross section has units of area and gives a measure of the effective size of the target. It is
usually measured in barns, 1 barn = 10−24 cm2.
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• For the Coulomb problem, we can different dθ/db (Eq. (1.99)) and use it in Eq. (1.102) to determine
the Rutherford cross section

dσ

dΩ
=

(
k

4E

)2
1

sin4(θ/2)
∼ 1

θ4
, (1.103)

which is inversely proportional to 1/θ4 at small angles.
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1.5 Constraints

Lagrange multipliers

• First we considered minimizing U(x, y) subject to a constraint Q(x, y) = 0. We said that we should
instead minimize

Û(x, y, λ) = U(x, y)− λQ(x, y) . (1.104)

λ is known as a Lagrange multiplier5. This leads to the conditions

dÛ(x, y) =

(
∂U

∂x
− λ∂Q

∂x

)
dx+

(
∂U

∂y
− λ∂Q

∂y

)
dy −Qdλ = 0 (1.105)

where the terms in front of dx, dy, and dλ should be set to zero. We explained that Q can be thought
of as a generalized coordinate, and λ is a generalized force conjugate to Q. This is just like adding an
external force. For instance if I have a potential U(x, y) and add an external force f in the x direction
then the new potential is

Û(x, y, f) = U(x, y)− fx . (1.106)

The forces of constraint in the x and y directions are

Fx =λ∂xQ , (1.107)

Fy =λ∂yQ . (1.108)

• The setup easily generalizes to more coordinates and more constraints. For coordinates xA and con-
straints Qα(xA) with α = 1 . . .m, if we want to minimize U(xA) subject to these constraints, we
instead extremize

Û(xA) = U(xA)− λαQα(xA) (1.109)

requiring that dÛ = 0, i.e. require

∂Û

∂xA
=0 (1.110)

∂Û

∂λα
=0 (1.111)

The forces of constraint in the xA direction are

FA = λα
∂Qα

∂xA
(1.112)

Newton’s Laws and Lagrange with constraints

• Consider Newton’s Laws for particles with positions ra. For simplicity consider just one constraint.

Q(ra) = 0 (1.113)

Then

dQ = ∇raQ · dra = 0 (1.114)

The forces of constraintsFCa do no work

FCa · dra = 0 (1.115)

5The sign in front of λ is irrelevant. The choice here is so that λ corresponds to the generalized force in the direction of
increasing Q, compare to Eq. (1.106). When we consider contraints in the Lagrangian, L = T − U , the multipliers will then

come with a plus sign L̂ = T − U + λQ.
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Thus, we make take FCa to be proportional to the gradient of Q

FCa = λ∇ra
Q (1.116)

Then Newton’s Laws read

dpa
dt

= F ext
a + λ∇ra

Q . (1.117)

Then Newton’s Law (F = ma) and the constraint, determine the accelerations of the particles and
the magnitude of the forces of constraint, i.e. λ.

• You should do some simple problems on Attwood’s machines (see below) to convice yourself that we
are always solving Eq. (1.117) when doing Freshmann physics problems.

• In the Lagrangian formalism we add some lagrange multipliers to enforce the constraints. Instead of
extremizing L(ṙa, ra), one extremizes L̂(ṙa, ra, λ) = L+ λQ, where λ is like an extra coordinate. The
Euler-Lagrange equations for L̂ are6

d

dt

(
∂L̂

∂ṙa

)
=
∂L̂

∂ra
(1.120)

0 =Q (1.121)

• If there are more constraints Qα, simply make the replacement λQ→ λαQ
α in the lagrangian formal-

ism. In the Newtonian formalism the force of constraint on the a-th particle is

Fa = λα∇ra
Qα . (1.122)

• Attwood machine. Consider two masses m1 and m2 hanging over a massless pulley (you know the
problem!). We have two coordinates z1 and z2 where z1 and z2 are the distances below the pulley
(increasing z means further down). The constraint is

Q = z1 + z2 − L (1.123)

The hatted Lagrangian is

L̂ = 1
2m1ż

2
1 + 1

2m2ż
2
2 +m1gz1 +m2ggz2 + λ(z1 + z2 − L) (1.124)

Newton’s or Lagranges’ equation of motion are

m1a1 =m1g + λ (1.125)

m2a2 =m2g + λ (1.126)

z1 + z2 = L (1.127)

Which are easily solved for a1, a2 and λ, using that Eq. (1.127) implies by differentationg that a1+a2 =
0. Solving these equations gives λ negative, i.e. the force is up not down. The case when the pulley
has mass in the Lagrangian formalism is suggested as an excercise.

6Perhaps we should write it a bit more explicitly. The coordinates of ra are ria with i = x, y, z. We mean

d

dt

(
∂L̂

∂ṙia

)
=
∂L̂

∂ria
(1.118)

d

dt

(
∂L̂

∂λ̇

)
=
∂L̂

∂λ
(1.119)

The equation 0 = Q follows from the equation for λ, which simply enforces the constraint.

https://en.wikipedia.org/wiki/Atwood_machine
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