1.3 The Hamiltonian Formalism, the Routhian, and the Legendre Transform The Hamiltonian formalism: basic version

- Let the Lagrangian be a convex function of the velocity $v_{q} \equiv \dot{q}$. In one dimension this means that the momentum $p=\partial L / \partial v_{q}$ is an increasing function of the velocity $v_{q} \equiv \dot{q}$, i.e $\partial^{2} L / \partial \dot{q}^{2}>0$. This means there is one value of the velocity for given momentum $p, \dot{q}(p)$. Clearly $L \propto v^{2}$ is convex.

In higher dimensions we require that $\partial^{2} L / \partial \dot{q}^{i} \partial \dot{q}^{j}$ is a positive definite matrix. This means that for a given value of p_{i} there is a unique value of the velocity vector $v_{q}^{i} \equiv \dot{q}^{i}(p)$ at fixed q.

- With convex function $L(\dot{q})$ a Legendre transform useful, and trades the velocity dependence of the Lagrangian dependence for the momentum dependence p of the Hamiltonian

First note

$$
\begin{equation*}
d L=p d \dot{q}+\underbrace{\frac{\partial L}{\partial q}+\frac{\partial L}{\partial t} d t}_{\text {"spectators" }} \tag{1.51}
\end{equation*}
$$

We can trade the $d \dot{q}$ for $d p$ by looking at $L-p \dot{q}$, or, as is conventional, minus this quantity. Thus we define

$$
\begin{equation*}
H(p, q, t)=p \dot{q}(p)-L(\dot{q}(p), q, t) \tag{1.52}
\end{equation*}
$$

where $\dot{q}(p)$ is determined from p at fixed q and t, i.e. we must invert the relation

$$
\begin{equation*}
p=\frac{\partial L(\dot{q}, q, t)}{\partial \dot{q}} \Rightarrow \text { determines } \dot{q}(p) \tag{1.53}
\end{equation*}
$$

We have (do it yourself!)

$$
\begin{equation*}
d H(p, q, t)=\dot{q} d p-(\underbrace{\frac{\partial L}{\partial q} d q+\frac{\partial L}{\partial t} d t}_{\text {"spectators" }}) . \tag{1.54}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{\partial H}{\partial p}=\dot{q} \quad \frac{\partial H}{\partial q}=-\frac{\partial L}{\partial q} \quad \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t} \tag{1.55}
\end{equation*}
$$

were L is a function \dot{q} and H is a function of the corresponding p. You should be able to show that these results (together with the Euler-Lagrange equations) yield Hamilton's equations of motion:

$$
\begin{align*}
& \frac{d q}{d t}=\frac{\partial H(q, p, t)}{\partial p} \tag{1.56}\\
& \frac{d p}{d t}=-\frac{\partial H(q, p, t)}{\partial q} \tag{1.57}
\end{align*}
$$

- When more variables are around then we simply sum over the $p_{i} \dot{q}^{i}$ term

$$
\begin{equation*}
H(p, q, t)=\sum_{i} p_{i} \dot{q}^{i}(p)-L(\dot{q}(p), q, t) \tag{1.58}
\end{equation*}
$$

and the equation of motion are

$$
\begin{align*}
\frac{d q^{i}}{d t} & =\frac{\partial H(q, p, t)}{\partial p_{i}} \tag{1.59}\\
\frac{d p_{i}}{d t} & =-\frac{\partial H(q, p, t)}{\partial q^{i}} \tag{1.60}
\end{align*}
$$

- The total derivative of the Hamiltonian satisfies

$$
\begin{equation*}
\frac{d H}{d t}=\frac{\partial H}{\partial t} \tag{1.61}
\end{equation*}
$$

so that if H is not an explicitly function of time then it is constant.

- For a (rather general) Lagrangian of the form

$$
\begin{equation*}
L=\frac{1}{2} a_{i j}(q) \dot{q}^{i} \dot{q}^{j}+b_{i}(q) \dot{q}^{i}-U(q) \tag{1.62}
\end{equation*}
$$

the momenta and velocities are related via

$$
\begin{equation*}
p_{i}=a_{i j} \dot{q}^{j}+b_{i}, \quad \dot{q}^{i}=\left(a^{-1}\right)^{i j}\left(p_{j}-b_{j}\right) . \tag{1.63}
\end{equation*}
$$

The Hamiltonian is

$$
\begin{equation*}
H(p, q, t)=\frac{1}{2}\left(a^{-1}\right)^{i j}\left(p_{i}-b_{i}\right)\left(p_{j}-b_{j}\right)+U(q) . \tag{1.64}
\end{equation*}
$$

This should be compared to the hamiltonian function in (1.46). The Hamiltonian is a function of the b_{i}, while the hamiltonian function is not. The Hamiltonian and hamiltonian function return the same value at corresponding points where $\dot{q}=\dot{q}(p)$, but have different functional forms.

The action principle

- The Hamiltonian can be used in the action principle to determine the equation of motion. The action takes a path in p, q space $\left(p_{i}(t), q^{i}(t)\right)$ and returns a number

$$
\begin{equation*}
S[p(t), q(t), t]=\int \mathrm{d} t\left(p_{i} \dot{q}^{i}-H(p, q, t)\right) \tag{1.65}
\end{equation*}
$$

We note $p_{i} \dot{q}^{i}-H=L$ at corresponding points. Varying the action with $p_{i}(t)$ and $q^{i}(t)$ separately (keeping the ends fixed) gives the Hamiltonian equation of motion. By doing this variation you should be able to show that

$$
\begin{align*}
\frac{d q^{i}}{d t} & =\frac{\partial H}{\partial p_{i}} \tag{1.66}\\
\frac{d p_{i}}{d t} & =-\frac{\partial H}{\partial q^{i}} \tag{1.67}
\end{align*}
$$

The Routhian

- It is often convenient to Legendre transform with respect to some of the coordinates. (This is usually convenient for the cyclic coordinates).
Suppose we have two coordinates x and y, with Lagrangian $L(\dot{x}, x, \dot{y}, y)$. If we Legendre transform with respect to \dot{x} (replacing it with p_{x}), but leave \dot{y} alone:

$$
\begin{equation*}
R\left(p_{x}, x, \dot{y}, y\right) \equiv p_{x} \dot{x}\left(p_{x}\right)-L\left(\dot{x}\left(p_{x}\right), x, \dot{y}, y\right) \tag{1.68}
\end{equation*}
$$

then R (known as the Routhian) acts like a Hamiltonian for $\left(p_{x}, x\right)$, but a Lagrangian ${ }^{2}$ for (\dot{y}, y). You should be able to show that

$$
\begin{align*}
\frac{d x}{d t} & =\frac{\partial R}{\partial p_{x}} \tag{1.69}\\
\frac{d p_{x}}{d t} & =-\frac{\partial R}{\partial x} \tag{1.70}\\
\frac{d}{d t}\left(\frac{\partial R}{\partial \dot{y}}\right) & =\frac{\partial R}{\partial y} \tag{1.71}
\end{align*}
$$

Here, since the variables in R are p_{x}, x, \dot{y} and y, the partial derivative, $\partial R / \partial y$, means, $(\partial R / \partial y)_{p_{x}}$. In the Lagrangian setup $L(\dot{x}, x, \dot{y}, y)$, with variables \dot{x}, x, \dot{y} and y, one would have $(\partial L / \partial y)_{\dot{x}}$.

[^0]
The Legendre Transform as extremization in the presence of an external bias (force)

- Consider the convex function $U(x)$. Its derivative is ${ }^{3}$

$$
\begin{equation*}
d U=f_{0}(x) d x \tag{1.72}
\end{equation*}
$$

Then we define ${ }^{4}$

$$
\begin{equation*}
\hat{U}(x, f)=f x-U(x) \tag{1.73}
\end{equation*}
$$

Then the Legendre transform is the extremum (maximum or minimum) of $\hat{U}(x, f)$ for fixed f, i.e.

$$
\begin{equation*}
V(f)=\operatorname{extrm}_{x}(f x-U(x)) \tag{1.74}
\end{equation*}
$$

This means that we are to change x until we reach the value $x(f)$ where \hat{U} is a maximum or minimum. The value of \hat{U} at this point is $V(f)$. By differentiation, the extremal point is when $f=d U / d x=f_{0}(x)$, which must be inverted to determine $x(f)$. Then $V(f)=f x(f)-U(x(f))$.

- We have

$$
\begin{equation*}
d U=f(x) d x \quad \text { and } \quad d V=x(f) d f \tag{1.75}
\end{equation*}
$$

and a relation between the second derivatives

$$
\begin{equation*}
\frac{d^{2} U}{d x^{2}} \frac{d^{2} V}{d f^{2}}=1 \tag{1.76}
\end{equation*}
$$

- Then inverse Legendre transform returns the back the potential

$$
\begin{equation*}
U(x)=\operatorname{extrm}_{f}(f x-V(f)) \tag{1.77}
\end{equation*}
$$

which you should prove for yourself.

- For more degrees of freedom, take $U\left(x_{1}, x_{2}\right)$ for example, the procedure works similarly. We define

$$
\begin{equation*}
V\left(f_{1}, f_{2}\right)=\operatorname{extrm}_{x_{1}, x_{2}}\left(f_{1} x^{1}+f_{2} x^{2}-U(x)\right) \tag{1.78}
\end{equation*}
$$

Then

$$
\begin{equation*}
d U=f_{1} d x^{1}+f_{2} d x^{2} \quad \text { and } d V=x^{1} d f_{1}+x^{2} d f_{2} \tag{1.79}
\end{equation*}
$$

Note that the matrices of second derivatives

$$
\begin{equation*}
U_{i j} \equiv \frac{\partial^{2} U}{\partial x^{i} \partial x^{j}} \quad V^{i j} \equiv \frac{\partial^{2} V}{\partial f_{i} \partial f_{j}} \tag{1.80}
\end{equation*}
$$

are inverses of each

$$
\begin{equation*}
V^{i \ell} U_{\ell j}=\delta_{j}^{i} \tag{1.81}
\end{equation*}
$$

[^1]
[^0]: ${ }^{2}$ Technically it is actually $-R$ that is Lagrangian for \dot{y}, y, due to the fact we are subtracting L when making the Legendre transform in Eq. (1.68). Of course you could have done the following $R=L-p_{x} \dot{x}$, and then it would be a Lagrangian for y, but $-R$ would be the Hamiltonian for x.

[^1]: ${ }^{3}$ Think of $U(x)$ as the spring like potential that a particle feels. Then $f_{0}(x)$ is the external force that must be applied to the system so that the particle is in equilibrium at position x. The "internal" force that the potential gives is $f_{\text {internal }}(x)=-d U / d x$. This internal force must be counterbalanced by the applied force $f_{0}(x)=-f_{\text {internal }}(x)$.
 ${ }^{4}$ Referring to to the previous footnote $\hat{U}(x, f)$ is minus the potential in the presence of an applied external force f. In thermodynamics we would define the Legendre transform with $\hat{U}=U-f x$, but the overall sign leads only to minor differences. We follow the mechanics convention, $H=p v_{q}-L$, with regard to sign.

