
Problem 1. (MIT/OCW) Spring system on a plane

A massless spring has an unstretched length b and spring constant k, and is used to connect
two particles of mass m1 and m2. The system rests on a frictionless table and may oscillate,
translate, and rotate.

(a) What is the Lagrangian? Write it with two-dimensional cartesian coordinates r1 =
(x1, y1) and r2 = (x2, y2). There are four coordinates in total.

(b) Setup a suitable set of generalized coordinates (four in total) to better account for the
symmetries of this system. Take one of your coordinates to be r = |r1 − r2|. What is
the Lagrangian in these variables?

(c) Identify three conserved generalized momenta that are associated to cyclic coordinates
in the Lagrangian from part (b). If you think you are missing some, try to improve
your answer to (b). Briefly explain the physical meaning of each of the three conserved
generalized momenta. Show that the equation of motion for r takes the form

meff r̈ = −∂Veff(r)

∂r
(1)

with an appropriate meff and Veff(r).

(d) Write down the hamiltonian function h(q, q̇, t) for the coordinates chosen in (b), and
show that

1

2
meff ṙ

2 + Veff(r) = const (2)

where the const is related to the “internal energy” of the oscillations.

(e) By examining the effective potential and its dependence on the rotation rate, show that
there is a solution that rotates but does not oscillate, and discuss what happens to this
solution for an increased rate of rotation. (A closed form solution is not necessary. A
graphical explanation based on the effective potential will suffice.)
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Problem 2. (Goldstein/MIT OCW) Jerky Mechanics

Consider an extension of classical mechanics where the equation of motion involves a triple
time derivative,

...
x = f(x, ẋ, ẍ, t). Lets use the action principle to derive the corresponding

Euler-Lagrange equations. Start with a Lagrangian of the form L(qi, q̇i, q̈i, t) for n generalized
coordinates qi, and make use of the action principle for paths qi(t) that have zero variation
of both qi and q̇i at the end points. Show that

d2

dt2

(
∂L

∂q̈i

)
− d

dt

(
∂L

∂q̇i

)
+

∂L

∂qi
= 0 (3)

for each i = 1 . . . n

Problem 3. Equivalent Lagrangians

Each of these is conceptual and requires minimal computation.

(a) (Goldstein) Let L(q, q̇, t) be the Lagrangian for a particle with coordinate q, which
satisfies the Euler-Lagrange equations. Show that the Lagrangian

L′ = L +
dF (q, t)

dt
(4)

yields the same Euler-Lagrange equations as L where F is an arbitrary differentiable
function. Give a proof based on and the action principle. We say that L and L′ are
equivalent. (If you feel like it you might also like to check directly that the EOM are
the same.)

(b) (Goldstein) Using the previous problem (Problem 2), what is the equation of motion
resulting from

L = −1

2
mqq̈ − 1

2
ω2

0q
2 (5)

and what is it related to? Explain why this equation of motion is obvious from the
Lagrangian in Eq. (5) and the result of part (a).

(c) Consider the action of a free particle

S[r(t)] =

∫ t2

t1

dt Cv2 (6)

where C = m/2 is a constant normally associated with the mass. Show that the action
is unchanged by a Galilean transformation up to boundary terms (i.e. terms that
only depend on the coordinates at the endpoints t1 and t2). Hence the transformed
version gives the same EOM. If the Lagrangian took the form L = Cv4 this would
not have been the case. Thus requiring Gallilean invariance fixes the form the velocity
dependent action to involve only v2, and what we call mass is just the coefficient in
front of this term.
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