Problem 1. Parametric resonance with damping

Consider an oscillator with a small damping coefficient η , and a time dependent mass, $m(t) = m_0(1 + \mu \cos(\Omega t))$, with μ is small. The frequency is $\Omega \simeq 2\omega_0 + \epsilon$ with ϵ also small. Thus the equation of motion is

$$\frac{d}{dt}(m(t)\dot{q}) + m_0\omega_0^2 q(t) + m_0\eta\dot{q} = 0$$
(1)

Determine the regions in the ϵ, μ plane where the oscillations are stable and unstable. How is the plot from class (the first plot below) modified by the non-zero damping coefficient?

You should find the following picture:

Problem 2. A pendulum in a harmonic electric field

A simple pendulum consists of a particle of mass m at the end of weightless rod of length ℓ . The particle has a charge q and sits in an electric field of amplitude E_0 , directed in the horizontal direction, which oscillates rapidly with frequency Ω , $\Omega \gg \sqrt{g/\ell}$.

- (a) Determine the Lagrangian for this system, and the equation of motion.
- (b) Above a critical field strength E_c the position $\phi = 0$ (the bottom of the pendulum) becomes unstable. Determine E_c and determine the new point of stability for $E > E_c$. Sketch the effective potential for $E < E_c$ and $E > E_c$.
- (c) Analyze the validity of your approximations. Is the critical field large or small compared to mg/q when your approximation is valid?

Problem 3. (Laurence Yaffe) A driven set of oscillators

General Background: Consider a set of coupled harmonic oscillators interacting with external time dependent forces. The oscillator Lagrangian without the forces reads¹

$$L_0 = \sum_{ij} \frac{1}{2} M_{ij} \dot{q}^i \dot{q}^j - \frac{1}{2} K_{ij} q^i q^j \,. \tag{2}$$

The Lagrangian for the forces driving the system is

$$L_{\rm int} = \sum_{i} F_i(t) q^i \,, \tag{3}$$

and the total Lagrangian is $L = L_0 + L_{int}$. As always, switch coordinates to the eigen basis of the generalized eigenvalue problem

$$q^i = \sum_a E^i_a Q^a \,, \tag{4}$$

where the \vec{E}_a is the *a*-th eigen-vector of the generalized eigenvalue problem, $K\vec{E}_a = \lambda_a M\vec{E}_a$. Recall that the natural frequency associated with the *a*-th normal mode is $\lambda_a = \omega_a^2$, and the eigenvectors are orthonormal with the mass matrix as weight:

$$\sum_{ij} E_a^i M_{ij} E_b^j = \delta_{ab} \,. \tag{5}$$

(a) Determine the Lagrangian for the coordinates Q^a , and show that the resulting equation of motion is

$$\ddot{Q}^a + \omega_a^2 Q^a = F_a \,, \tag{6}$$

where $F_a = \sum_i F_i E_a^i$ is the projection of the force vector $\vec{F} = (F_i)$ onto the *a*-th normal mode, i.e. $F_a = \vec{F} \cdot \vec{E}_a$.

Problem: Now consider two masses, $m_1 = 2m$ and $m_2 = m$, are suspended in a uniform gravitational field g by identical massless springs with spring constant k. Assume that only vertical motion occurs, and let z_1 and z_2 denote the vertical displacement of the masses from their equilibrium positions, increasing in the downward direction as shown. An external time-dependent force F(t) is applied to the lower mass (with F > 0 indicating a downward vertical force). Assume that the external force vanishes as $t \to \pm \infty$, with the system initially at rest in its equilibrium configuration at time $-\infty$. Let $F(\omega)$ denote the Fourier transform of F(t).

¹For the rest of this problem we will not use the summation convention.

- (b) Construct the Lagrangian for the system without the force and find the normal modes and frequencies. Then include the external force, and find the resulting equations of motion.
- (c) Solve for the motion of both masses (expressed as an integral involving the timedependent force).
- (d) Find the total work done on the system by the external force, $W = E(+\infty) E(-\infty)$. Show that it can be expressed in the form

$$W = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \chi(\omega) |F(\omega)|^2 \tag{7}$$

with $\chi(\omega)$ real and positive. $\chi(\omega)$ is known as the response function, and will be proportional to a delta-functions in the absence of damping.

- (e) If a small damping term is added to each equation of motion, so $m_i \ddot{z}_i \to m_i \ddot{z}_i + m_i \eta \dot{z}_i$, make an educated guess how this qualitatively changes the response function $\chi(\omega)$ and make a sketch of $\chi(\omega)$.
- (f) (Optional) With the dissipation described in the previous item, again find the total work done by the force on the system. (W is not equal to $E(\infty) E(-\infty)$, since the work done is ultimately dissipated away.) Determine $\chi(\omega)$ in this case.