
Problem 1. Parametric resonance with damping

Consider an oscillator with a small damping coefficient η, and a time dependent mass,
m(t) = m0(1 + µ cos(Ωt)), with µ is small. The frequency is Ω ' 2ω0 + ε with ε also small.
Thus the equation of motion is

d

dt
(m(t)q̇) +m0ω

2
0q(t) +m0ηq̇ = 0 (1)

Determine the regions in the ε, µ plane where the oscillations are stable and unstable. How
is the plot from class (the first plot below) modified by the non-zero damping coefficient?

Next, a fundamental solution matrix out of two solution vectors,
x11ðtÞ
x12ðtÞ

! "
and

x21ðtÞ
x22ðtÞ

! "
is constructed, satisfying the initial

conditions

x11ð0Þ
x12ð0Þ

! "
¼ 1

0

! "
;

x21ð0Þ
x22ð0Þ

! "
¼ 0

1

! "
(28)

The matrix C is the evaluation of the fundamental solution matrix
at time T

C ¼ x11ðTÞ x21ðTÞ
x12ðTÞ x22ðTÞ

! "
(29)

From Floquet theory [1], it is known that stability is determined
by the eigenvalues (characteristic multipliers) of C

k2 $ ðtrCÞkþ detC ¼ 0 (30)

where trC and detC are the trace and determinant of C. Now
Eq. (26) has the special property that detC¼1. This may be shown
by defining W (the Wronskian) as:

WðtÞ ¼ detC ¼ x11ðtÞx22ðtÞ $ x12ðtÞx21ðtÞ (31)

Taking the time derivative of W and using Eq. (27) gives that
ðdW=dtÞ ¼ 0, which implies that WðtÞ ¼ constant ¼ Wð0Þ ¼ 1.
Thus, Eq. (30) can be written down as

k2 $ ðtrCÞkþ 1 ¼ 0 (32)

Its solutions are

k1;2 ¼
trC6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trC2 $ 4
p

2
(33)

Floquet theory [1] showed that instability results if either eigen-
value has modulus larger than unity. Thus, if jtrCj > 2, then
Eq. (33) gives real roots. But the product of the roots is unity, so
if one root has modulus less than unity, the other has modulus
greater than unity, with the result that this case is unstable and

corresponds to exponential growth in time. On the other hand, if
jtrCj < 2, then Eq. (33) gives a pair of complex conjugate roots.
But since their product must be unity, they must both lie on the
unit circle, with the result that this case is stable. Note that the sta-
bility here is neutral stability not asymptotic stability, since
Eq. (26) has no damping. This case corresponds to quasiperiodic
behavior in time.

So, the transition from stable to unstable corresponds to those
parameter values which give jtrCj ¼ 2. From Eq. (33), if trC ¼ 2,

then k1;2 ¼ 1; 1 and this corresponds to a periodic solution with
period T. On the other hand, if trC ¼ $2, then k1;2 ¼ $1;$1.
This corresponds to a periodic solution with period 2T. This anal-
ysis gives the important result that on the transition curves in
parameter space between stable and unstable, there exist periodic
motions of period T or 2T.

The theory presented in this section can be used as a practical
numerical procedure for determining stability of Eq. (26). One
needs to begin by numerically integrating the ordinary differential
equation for the two initial conditions (28); carry each numerical
integration out to time t¼ T and so obtain trC ¼ x11ðTÞ þ x22ðTÞ;
then, jtrCj > 2 is unstable, while jtrCj < 2 is stable. Note that this
approach allows one to draw conclusions about large time behav-
ior after numerically integrating for only one forcing period.
Without Floquet theory, one would have to numerically integrate
out to large time in order to determine if a solution was growing
unbounded, especially for systems which are close to a transition
curve, in which case the asymptotic growth is very slow.

A stability chart of Mathieu’s equation with several tongues
obtained by using numerical integration in conjunction with Flo-
quet theory is shown in Fig. 3. Note that there are stable regions
in the negative half-plane d < 0. By choosing parameters so that
the system lies in one of these stable regions for negative d, we
may stabilize an equilibrium which is unstable in the unforced
system. An example is the periodically forced inverted pendulum
discussed in Eq. (4).

3.1.3 Harmonic Balancing. The transition curves (25) found
earlier in Sec. 3.1.1 cover the first tongue only. The question that
naturally arises is [1]: Why did the perturbation method miss the
other tongues of instability? It was because the perturbation
method was truncated, neglecting terms of Oð!2Þ. The other
tongues of instability turn out to emerge at higher order truncations

Fig. 2 (a) Two transition curves of Mathieu’s equation for the first region of instability called a tongue for an undamped case
(solid line), Eq. (25), (b) example of motion of point P1 located inside the tongue, and (c) example of motion of point P2
located outside the tongue

020802-4 / Vol. 70, MARCH 2018 Transactions of the ASME

!2
0

⌦2

h
/
4=

d
ri

ve
am

p
li
tu

d
e

Stable

Unstable 

Stable
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! "
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1

! "
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Next, a fundamental solution matrix out of two solution vectors,
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You should find the following picture:
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Solution:

(a) The equation of motion takes the form

m(t)q̈ +m0ω
2
0q(t) +m0ηq̇ + ṁq̇ = 0 (2)

we may divide by m(t) yielding in a first approximation

q̈ + ω2
0q(t)− µω2

0 cos(Ωt)q(t) + ηq̇ − µΩ sin(Ωt)q̇ = 0 . (3)

We are keeping terms linear in µ and η expanding

m0ω
2
0

m(t)
' ω2

0 − µω2
0 cos(Ωt) . (4)

We write

q̈ + ω2q + (−ω2 + ω2
0)q(t)− µω2

0 cos(Ωt)q(t) + ηq̇ − µΩ sin(Ωt)q̇ = 0 . (5)

Treating the detuning term as a perturbation

(−ω2 + ω2
0) ' −2ω0∆ω = −ω0ε . (6)

Some trig identities will be needed below

cos(2x) cos(x) =
1

2
cos(3x) +

1

2
cos(x) (7)

cos(2x) sin(x) =
1

2
sin(3x)− 1

2
sin(x) (8)

sin(2x) cos(x) =
1

2
sin(3x) +

1

2
sin(x) (9)

sin(2x) sin(x) =− 1

2
cos(3x) +

1

2
cos(x) (10)

For a harmonic oscillator driven with frequency ω we have

q(t) = A cos(ωt) +B sin(ωt) (11)

In this case the parametric resonance essentially drives the frequency at ω = Ω/2 as we will
see below. Heuristically this is because the (nearly resonant) driving term is

cos(2ωt) cos(ωt) =
1

2
cos(3ω) +

1

2
cos(ωt)

︸ ︷︷ ︸
nearly on resonance

(12)

In a rotating wave approximation we allow the A and B to depend on time

q(0)(t) = A(t) cos(ωt) +B(t) sin(ωt) (13)
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and adjust A and B to remove the secular divergence. Substituting this form into the
equations of motion using that

q̈ ' −ω2q(0) + 2Ḃω cos(ωt)− 2Ȧω sin(ωt) (14)

Since the terms involving q̇ are already small (proportional to η and µ) we may take simply

ηq̇ ' Bηω cos(ωt)− Aηω sin(ωt) (15)

Tackling the first non-linear term

− µω2
0 cos(Ωt)(A(t) cos(ωt) +B sin(ωt)) = −µω

2
0A

2
(cos(Ω + ω) + cos(Ω− ω0))

+
µω2

0B

2
(sin(Ω + ω) + sin(Ω− ω)) (16)

Now Ω = 2ω = 2ω0 + ε with ε � 1. So the terms which are (approximately) on resonance,
are the terms with Ω − ω = ω ' ω0. Neglecting the Ω + ω terms as being small, and away
from resonance, we have

−µω2
0 cos(Ωt)(A(t) cos(ωt) +B sin(ωt)) '− µω2

0A

2
cos(ωt) +

µω2
0B

2
sin(ωt)) . (17)

Similarly, we may treat treat the second nonlinear term, dropping terms which are pro-
portional to Ω + ω, but keeping the nearly resonant terms as before we find

−µΩ sin(Ωt)(−Aω sin(ωt) +Bω cos(ωt)) =
AµΩω

2
cos(ωt)− BµωΩ

2
sinω (18)

=Aµω2 cos(ωt)−Bµω2 sinω . (19)

Finally we have the detuning term

(−ω2 + ω2
0)q = −ωεA cos(ωt)− ωεB sin(ωt) (20)

Collecting the coefficients of sin(ωt) and cos(ωt) yields

q̈(1) + ω2q(1) +

[
2Ḃω +Bηω − µω2

2
A+ Aµω2 − ωεA

]
cos(ωt)

+

[
−2Ȧω − Aηω +

µω2

2
B −Bµω2 − ωεB

]
sin(ωt)

+ neglected 3ω terms = 0 (21)

Requiring that the secular terms vanish yields and neglecting (in a first approximation) the
distinction between ω and ω0

d

dt

(
A
B

)
+

1

2

(
η µω0

2
+ ε

µω0

2
− ε η

)(
A
B

)
. (22)
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Figure 1: Stability regions

Comparison with the course notes shows that µ plays the role of h. The eigenvalues of
the matrix, Ȧ ∼ e(λ/2)t

λ± =
[
±
√

(µω0/2)2 − ε2 − η
]

(23)

If an eigenvalue has a positive real part then the motion will grow exponentially and be
unstable; the solutions are proportional to e(λ/2)t. This can happen if the drive parameter µ
is sufficiently large. Neglecting the dissipation, this happens when µω0/2 > ε as discussed
in class. In the current case (with dissipation), the drive amplitude must overcome the −η
term. We can determine the boundary of stability by setting λ+ to zero:

√
(µω0/2)2 − ε2 − η = 0 . (24)

So, the motion will be unstable when

(µω0

2

)2

> η2 − ε2 . (25)

This is the equation of a hyperbola which is shown in Fig. 1.
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Problem 2. A pendulum in a harmonic electric field

A simple pendulum consists of a particle of mass m at the end of weightless rod of length
`. The particle has a charge q and sits in an electric field of amplitude E0, directed in the
horizontal dirction, which oscillates rapidly with frequency Ω, Ω�

√
g/`.

(a) Determine the Lagrangian for this system, and the equation of motion.

(b) Above a critical field strength Ec the position φ = 0 (the bottom of the pendulum)
becomes unstable. Determine Ec and determine the new point of stability for E > Ec.
Sketch the effective potential for E < Ec and E > Ec.

(c) Analyze the validity of your approximations. Is the critical field large or small compared
to mg/q when your approximation is valid?
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Solution:

(a) Force on the particle is
Fx(t) = qE0 cos(Ωt) (26)

which gives a Lagrangian

LE = qE0 cos(Ωt)x(t) = qE0 cos(Ωt)` sin(φ) (27)

So the Lagrangian of the system is ultimately

L =
1

2
m`2φ̇2 −mg`(1− cos(φ)) + qE0 cos(Ωt)` sin(φ) (28)

Then the equation of motion is

m`2φ̈ = −mg` sinφ+ qE0 cos(Ωt)` cos(φ) (29)

(b) Then, using the pondermotive time approximate discussed which is valid for large Ω,
we write φ(t) = Φ(t) + ξ, and then at lowest order find

m`2ξ̈ = qE0` cos(Ωt) cos(Φ) (30)

Or solving for ξ we find

ξ(t) = −qE0` cos(Ωt) cos(Φ)

(m`2)Ω2
. (31)

At next order there is an additional torque on the slow variable Φ

qE0` cos(Ωt) cos(Φ + ξ) 'qE0` cos(Ωt) [cos(Φ)− sin(Φ)ξ(t)] (32)

=
(qE0`)

2

(m`2)Ω2
(sin Φ cos Φ)cos2(Ωt) (33)

=
(qE0`)

2

2(m`2)Ω2
(sin Φ cos Φ) (34)

=− (qE0`)
2

4(m`2)Ω2

∂(cos2 Φ)

∂Φ
(35)

With this the equation of motion for the slow variable is

m`2Φ̈ = − ∂

∂Φ

[
−mg` cos(Φ) +

(qE0`)
2

4m`2Ω2
cos2 Φ

]
(36)

So the potential takes the form

Ueff

mg`
= − cos(Φ) + α cos2(Φ) (37)

with

α ≡ (qE0)2

(2mg)2

(ω0

Ω

)2

with ω2
0 =

g

`
(38)
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The parameter α is the ratio of forces due to the electric field and gravity, multiplied
by the ratio of the the two frequencies in this problem ω0/Ω. We have assumed here
that Ω � ω0. So α is of order unity only when the electric field is large compared to
gravity qE � mg.

Then we may expand the potential for small Φ

Ueff

mg`
= 1 + α +

(
−Φ2

2
+ α Φ2

)
(39)

So we see that for

α >
1

2
(40)

the potential will not have a minimum at Φ = 0.

We can find the new minimum. By differentiation

∂

∂ cos Φ

(
Ueff

mg`

)
= −1 + 2α cos(Φ) = 0 . (41)

So the point of stability is

cos Φ∗ =
1

2α
. (42)

The potential as function of cos(Φ) is sketched on the next page

(c) The parameter α is of order unity when the field is large enough E > Ec. Since we
have assumed that ω0 � Ω, this can only happen for qE0 � mg.
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Problem 3. (Laurence Yaffe ) A driven set of oscillators

General Background: Consider a set of coupled harmonic oscillators interacting with
external time dependent forces. The oscillator Lagrangian without the forces reads1

L0 =
∑

ij

1

2
Mij q̇

iq̇j − 1

2
Kijq

iqj . (43)

The Lagrangian for the forces driving the system is

Lint =
∑

i

Fi(t)q
i , (44)

and the total Lagrangian is L = L0 + Lint. As always, switch coordinates to the eigen basis
of the generalized eigenvalue problem

qi =
∑

a

Ei
aQ

a , (45)

where the ~Ea is the a-th eigen-vector of the generalized eigenvalue problem, K ~Ea = λaM ~Ea.
Recall that the natural frequency assoicated with the a-th normal mode is λa = ω2

a, and the
eigenvectors are orthonormal with the mass matrix as weight:

∑

ij

Ei
aMijE

j
b = δab . (46)

(a) Determine the Lagrangian for the coordinates Qa, and show that the resulting equation
of motion is

Q̈a + ω2
aQ

a = Fa , (47)

where Fa =
∑

i FiE
i
a is the projection of the force vector ~F = (Fi) onto the a-th normal

mode, i.e. Fa = ~F · ~Ea .

Problem: Now consider two masses, m1 = 2m and m2 = m, are suspended in a uniform
gravitational field g by identical massless springs with spring constant k. Assume that only
vertical motion occurs, and let z1 and z2 denote the vertical displacement of the masses from
their equilibrium positions, increasing in the downward direction as shown. An external
time-dependent force F (t) is applied to the lower mass (with F > 0 indicating a downward
vertical force). Assume that the external force vanishes as t→ ±∞, with the system initially
at rest in its equilibrium configuration at time −∞. Let F (ω) denote the Fourier transform
of F (t).

1For the rest of this problem we will not use the summation convention.
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Physics 505 Problem Set #6 February 15, 2017
Due Tuesday, February 21, 2017

1. Hanging Masses Redux

z

z

1

2

k

k

2m

m

Two masses, m1 = 2m and m2 = m, are suspended in a uniform gravita-
tional field g by identical massless springs with spring constant k. Assume
that only vertical motion occurs, and let z1 and z2 denote the vertical dis-
placement of the masses from their equilibrium positions, increasing in the
downward direction as shown. An external time-dependent force F (t) is
applied to the lower mass (with F > 0 indicating a downward vertical
force). Assume that the external force vanishes as t ! ±1, with the
system initially at rest in its equilibrium configuration at time �1. Let
eF (!) denote the Fourier transform of F (t).

(a) Construct the Lagrangian for the system, including the external force,
and find the resulting equations of motion.

(b) Solve for the motion of both masses (expressed as an integral involving
the time-dependent force).

(c) Find the total work down on the system by the external force, �E =
E(+1) � E(�1). Show that it can be expressed in the form

�E =

Z 1

�1

d!

2⇡
e�(!) | eF (!)|2 ,

with e�(!) real and positive.

(d) Extra credit: If a small damping term is added to each equation of
motion, so mi z̈i ! mi z̈i + 1

2
� żi, how does this change the response

function e�(!)?

2. Select a problem from the archive of 1996–2011 qualifying exam problems, available at
https://sharepoint.washington.edu/phys/grad/Pages/Masters-Review.aspx , which
is related to the material we have covered to date in class and which you find both interesting
and reasonably challenging. Solve it and write it up clearly.

(b) Construct the Lagrangian for the system without the force and find the normal modes
and frequencies. Then include the external force, and find the resulting equations of
motion.

(c) Solve for the motion of both masses (expressed as an integral involving the time-
dependent force).

(d) Find the total work done on the system by the external force, W = E(+∞)−E(−∞).
Show that it can be expressed in the form

W =

∫ ∞

−∞

dω

2π
χ(ω)|F (ω)|2 (48)

with χ(ω) real and positive. χ(ω) is known as the response function, and will be
proportional to a delta-functions in the absence of damping.

(e) If a small damping term is added to each equation of motion, so miz̈i → miz̈i +miηżi,
make an educated guess how this qualitatively changes the response function χ(ω) and
make a sketch of χ(ω).

(f) (Optional) With the dissipation described in the previous item, again find the total
work done by the force on the system. (W is not equal to E(∞)− E(−∞), since the
work done is ultimately dissipated away.) Determine χ(ω) in this case.
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(a) The kinetic term is

T =
1

2
(2m)ż2

1 +
1

2
mż2

2 (49)

The potential term is

U =
1

2
kz2

1 +
1

2
k(z2 − z1)2 (50)

While the force term adds
L = F (t)z2 (51)

Differentiation of L = T − U + LF gives

(
2m 0
0 m

)(
z̈1

z̈2

)
=

(
2k −k
−k k

)(
z1

z2

)
+

(
0

F (t)

)
(52)

(b) Let us look for some normal modes. We find the eigenvectors of the eigenvalue problem

ω2

(
2m 0
0 m

)

︸ ︷︷ ︸
M

(
u1

u2

)
=

(
2k −k
−k k

)

︸ ︷︷ ︸
K

(
u1

u2

)
(53)

which leads to

ω± =
k

2m
(2±

√
2) (54)

with eigenmodes

E± =

(
±
√

2
2

)
(55)

which satisfy
KE± = −ω2ME± (56)

The solution is expanded in terms of this basis

(
z1(t)
z2(t)

)
= Z+(t)E+ + Z−(t)E− (57)

In the eigen-mode bases we can expand the force

(
0

F (t)

)
=MM−1

(
0

F (t)

)
=M

(
0
F (t)
m

)
=M

[
F (t)

4m
E+ +

F (t)

4m
E−

]
(58)

Then the equation of motion for Z+ and Z− read

M
[(
Z̈+ + ω2

+Z+ +
F (t)

4m

)
E+ +

(
Z̈− + ω2

− +
F (t)

4m

)
E−

]
= 0 (59)

We note that the vectors are orthogonal with M as a weight:

ET
+ME− = 0 , (60)
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implying that

Z̈+ + ω2
+Z+ =

F (t)

4m
(61a)

Z̈− + ω2
−Z− =

F (t)

4m
(61b)

These equations are solved directly using the green function

Z±(t) =

∫ ∞

−∞
dt0GR(t− t0)

F (t0)

4m
(62)

where

GR(t, t0) = θ(t− t0)
sin(ω±(t− t0)

ω±
(63)

(c) Then the total work on the system is

W =

∫ ∞

−∞
dtF (t)ż2(t) (64)

yielding

W =

∫ ∞

−∞
dtF (t)

(
2Ż+ + 2Ż−

)
(65)

We worked this out in the previous homework. For a single oscillator with a force F (t)

mẍ+mω2
0x = F (t) (66)

The energy is

E(t) =
m

2
|a(t)|2 =

1

2m

∣∣∣∣
∫ ∞

−∞
dt0e

−iω0t0F (t0)

∣∣∣∣
2

=
1

2m
|F (ω0)|2 (67)

The problem is almost identical here, but we should replace

F (t)→ F (t)

4
(68)

as shown by the equation of motion in Eq. (61a).

W =

∫ ∞

−∞
dt 8×

[
F (t)

4
Ż+ +

F (t)

4
Ż−

]
(69)

=8
1

2m (16)

[
|F (ω+)|2 + |F (ω−)|2

]
(70)

=
1

4m

[
|F (ω+)|2 + |F (ω−)|2

]
(71)

So the response function is

χ(ω) =
1

8m
[2πδ(ω − ω+) + 2πδ(ω − ω−) + 2πδ(ω + ω+) + 2πδ(ω + ω−)] (72)
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(d) If the damping is small each of the δ-functions of the previous part is smeared. We may
proceed a bit differently.

W =

∫ ∞

−∞
dtF (t)

(
2Ż+ + 2Ż−

)
(73)

W =

∫ ∞

−∞
dt

∫ ∞

−∞
dt0 F (t)

(
2 ∂tGR(t− t0;ω+)

F (t0)

4m
+ (ω+ → ω−)

)
(74)

Now we use the properties of Fourier transformations to express the result in Fourier
space. We use that ∫

dtA(t) ∂tB(t) =

∫
dω

2π
A(−ω) (−iωB(ω)) (75)

with A(t) = F (t) and

∂tB(t) =

∫ ∞

−∞
dt0 ∂tGR(t− t0;ω+)

F (t0)

2m
. (76)

We have also haved used the fact that each time derivative simply adds a (−iω) in Fourier
space, i.e. the following are Fourier transform pairs:

∫
dteiωt ∂nt B(t) = (−iω)nB(ω) . (77)

We then use that the Fourier transform of a convolution is the product of Fourier transforms,
i.e. if

B(t) =

∫ ∞

−∞
dt0C(t− t0)D(t0) , (78)

Then

B(ω) =

∫
dt eiωtB(t) = C(ω)D(ω) . (79)

If these properties of Fourier transforms are not familiar take charge and learn about them
on your own. We have finally

Fourier Transform of Eq. 76 = −iωB(ω) = −iωGR(ω;ω+)
F (ω)

2m
. (80)

and thus we have

W =
1

2m

∫ ∞

−∞

dω

2π
F (−ω)(−iωGR(ω;ω+))F (ω) + (ω+ → ω−) (81)

The retarded Green function in Fourier space was worked out in class

GR(ω;ω+) =
1

−ω2 + ω2
+ − iωη

(82)

=
(−ω2 + ω2

+)

(ω2 − ω2
+)2 + (ωη)2

+
iωη

(ω2 − ω2
+)2 + (ωη)2

(83)
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The real part of GR(ω) is even, while the imaginary part of GR(ω) is odd. The imaginary
part of the retarded Green function discussed in class is

ωImGR(ω;ω0) =
ω2η

(−ω2 + ω2
0)2 + (ωη)2

(84)

and is shown below.

We also use that F (−ω) = F ∗(ω) if F (t) is real. This means that

W =
1

2m

∫ ∞

−∞

dω

2π
|F (ω)|2 [ωImGR(ω;ω+) + (ω+ → ω−)] (85)

We find finally

χ(ω) =
1

2m
[ωImGR(ω;ω+) + (ω+ → ω−)] (86)

In the limit that the damping coefficient becomes zero, the result passes to part (c), since

ωImGR(ω, ω0)→ 2π

4
[δ(ω − ω0) + δ(ω + ω0)] (87)

as is clear from the figure above.
We show the result for χ(ω) in Fig. 2
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Figure 2: The four peaks are at ω = ±ω+ and ω = ±ω−
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