Problem 1. Parametric resonance with damping

Consider an oscillator with a small damping coefficient 7, and a time dependent mass,
m(t) = mo(1 + pcos(Qt)), with u is small. The frequency is 2 ~ 2wy + € with € also small.
Thus the equation of motion is

d

dt
Determine the regions in the €, u plane where the oscillations are stable and unstable. How
is the plot from class (the first plot below) modified by the non-zero damping coefficient?

(m(t)q) + mowgq(t) + mong = 0 (1)
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Solution:
(a) The equation of motion takes the form
m(t)G + mowaq(t) +mong + g =0 (2)
we may divide by m(t) yielding in a first approximation
G+ wiq(t) — pwg cos(Q)q(t) +ng — pS2sin(Qt)g = 0. (3)

We are keeping terms linear in p and 7 expanding

2
mow
m(t)o ~ Wi — i cos(Q) . (4)
We write
G+ wiq+ (—w? + wi)q(t) — pws cos(Qt)q(t) +ng — pQsin(Qt)g = 0. (5)

Treating the detuning term as a perturbation
(—w? + W) ~ —2wyAw = —wpe . (6)

Some trig identities will be needed below

cos(2z) cos(x) :% cos(3z) + %Cos(a:) (7)
cos(22) sin(z) :% sin(3z) — ésin(x) (8)
sin(2z) cos(z) —% sin(3z) + % sin(z) ()
in(2z) sin(z) = — %005(3@ + %cos(x) (10)

For a harmonic oscillator driven with frequency w we have
q(t) = Acos(wt) + B sin(wt) (11)

In this case the parametric resonance essentially drives the frequency at w = 2/2 as we will
see below. Heuristically this is because the (nearly resonant) driving term is

cos(2wt) cos(wt) = % cos(3w) + %Cos(wt) (12)
(S

nearly on resonance

In a rotating wave approximation we allow the A and B to depend on time

¢ (t) = A(t) cos(wt) + B(t) sin(wt) (13)



and adjust A and B to remove the secular divergence. Substituting this form into the
equations of motion using that

G~ —w?qY + 2Bw cos(wt) — 2Aw sin(wt) (14)
Since the terms involving ¢ are already small (proportional to n and p) we may take simply
ng ~ Bnw cos(wt) — Anw sin(wt) (15)

Tackling the first non-linear term

pwi A

— pwg cos(Q)(A(t) cos(wt) + Bsin(wt)) = — (cos(2 + w) + cos(2 — wy))

pwi B
2

(sin(Q + w) +sin(Q —w)) (16)

Now Q = 2w = 2wy + € with € < 1. So the terms which are (approximately) on resonance,
are the terms with 2 — w = w ~ wy. Neglecting the Q2 + w terms as being small, and away
from resonance, we have

2A ’B
i cos(wt) + F%

— pwi cos(Qt)(A(t) cos(wt) + Bsin(wt)) o~ — sin(wt)) . (17)

Similarly, we may treat treat the second nonlinear term, dropping terms which are pro-
portional to €2 + w, but keeping the nearly resonant terms as before we find

ApQw Buw

—uS2sin(Qt) (— Aw sin(wt) + Bw cos(wt)) = cos(wt) — sin w (18)
= Apw? cos(wt) — Buw?sinw . (19)
Finally we have the detuning term
(—w? + wd)q = —weA cos(wt) — weB sin(wt) (20)
Collecting the coefficients of sin(wt) and cos(wt) yields
GV + w2 + [ZBw + Bnw — MTMQA + Apw?® — weA} cos(wt)
+ [—2Aw — Anw + 'MTWQB — Buw?* — weB} sin(wt)

+ neglected 3w terms =0 (21)

Requiring that the secular terms vanish yields and neglecting (in a first approximation) the
distinction between w and wy
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Figure 1: Stability regions

Comparison with the course notes shows that u plays the role of i. The eigenvalues of
the matrix, A ~ e/

Ao = [/ (aoo/2)7 = @ = 1) (23)

If an eigenvalue has a positive real part then the motion will grow exponentially and be
unstable; the solutions are proportional to e®*/?*. This can happen if the drive parameter p
is sufficiently large. Neglecting the dissipation, this happens when pwg/2 > € as discussed
in class. In the current case (with dissipation), the drive amplitude must overcome the —n
term. We can determine the boundary of stability by setting A, to zero:

V(pwo/2)? — €2 —n=0. (24)

So, the motion will be unstable when
2
(@) >’ — €. (25)

This is the equation of a hyperbola which is shown in Fig. 1.



Problem 2. A pendulum in a harmonic electric field

A simple pendulum consists of a particle of mass m at the end of weightless rod of length
¢. The particle has a charge ¢ and sits in an electric field of amplitude FEj, directed in the
horizontal dirction, which oscillates rapidly with frequency Q, Q > (/g/¢.

(a) Determine the Lagrangian for this system, and the equation of motion.

(b) Above a critical field strength E, the position ¢ = 0 (the bottom of the pendulum)
becomes unstable. Determine F,. and determine the new point of stability for £ > E.,.
Sketch the effective potential for F < E. and F > E..

(c¢) Analyze the validity of your approximations. Is the critical field large or small compared
to mg/q when your approximation is valid?



Solution:

(a)

Force on the particle is
F.(t) = qEq cos(Qt) (26)

which gives a Lagrangian
Lg = qEqcos(Qt)x(t) = qFEy cos(Qt)sin(¢) (27)

So the Lagrangian of the system is ultimately

L= %mﬁé? —mgl(1 — cos(¢)) + qEp cos(2t) sin(¢) (28)

Then the equation of motion is

ml?¢p = —mglsin ¢ + qEq cos(Qt) L cos(¢) (29)

Then, using the pondermotive time approximate discussed which is valid for large 2,
we write ¢(t) = ®(t) + &, and then at lowest order find

ml*¢ = qEol cos(t) cos(P) (30)
Or solving for ¢ we find
_ qEylcos(Q2t) cos(P)

At next order there is an additional torque on the slow variable ®

qEol cos(§2t) cos(P + &) ~qEyl cos(2t) [cos(P) — sin(P)E(t)] (32)
B ) @ cos ®)oos? (S0 33
=m0 (sin @ cos ®)cos?(2t) (33)
qEy0)? .
:W(sm ® cos ) (34)
2 2
_ (qEol)* O(cos® @) (35)
4(me?)Q2 0P
With this the equation of motion for the slow variable is
S e 2
ml“d = 5% [ mgl cos(P) + am2p C% o (36)
So the potential takes the form
U _ _ cos(®) + a cos®(P) (37)
mgl
with (4Eo)’ ,
_ Lo wo . 2_ 4
f— —_— h = —
a (2mg)? < ) wit W =7 (38)



The parameter « is the ratio of forces due to the electric field and gravity, multiplied
by the ratio of the the two frequencies in this problem wy/€2. We have assumed here
that € > wy. So « is of order unity only when the electric field is large compared to
gravity ¢F > mg.

Then we may expand the potential for small ®

Uett 2 N
=1 -—— o
mgl —I—a+( 5 +a ) (39)

So we see that for )
o > 5 (40)

the potential will not have a minimum at ¢ = 0.

We can find the new minimum. By differentiation

0 Uet \ B
Soos B (mg€> = —1+4 2acos(®) =0. (41)

So the point of stability is
1

% .

The potential as function of cos(®) is sketched on the next page

cos @, = (42)

The parameter « is of order unity when the field is large enough £ > FE.. Since we
have assumed that wy < €2, this can only happen for ¢FEy > mg.



Problem 3. (Laurence Yaffe ) A driven set of oscillators

General Background: Consider a set of coupled harmonic oscillators interacting with
external time dependent forces. The oscillator Lagrangian without the forces reads’

Ly = § 5 M4 ¢ — 5K ¢ . (43)
]

The Lagrangian for the forces driving the system is
Lint = Z E(t)ql ) (44>

and the total Lagrangian is L = Ly + L. As always, switch coordinates to the eigen basis
of the generalized eigenvalue problem

¢ =) E.Q, (45)

where the E, is the a-th eigen-vector of the generalized eigenvalue problem, K E, = \ME,.
Recall that the natural frequency assoicated with the a-th normal mode is A\, = w?, and the
eigenvectors are orthonormal with the mass matrix as weight:

> E\ME] = b (46)

ij

(a) Determine the Lagrangian for the coordinates %, and show that the resulting equation
of motion is

Q" +wiQ" = F,, (47)
where F, = Y. F;E! is the projection of the force vector F = (F}) onto the a-th normal
mode, i.e. F, = F. Ea

Problem: Now consider two masses, m; = 2m and my = m, are suspended in a uniform
gravitational field g by identical massless springs with spring constant k. Assume that only
vertical motion occurs, and let z; and 2z, denote the vertical displacement of the masses from
their equilibrium positions, increasing in the downward direction as shown. An external
time-dependent force F'(t) is applied to the lower mass (with F' > 0 indicating a downward
vertical force). Assume that the external force vanishes as t — +o00, with the system initially
at rest in its equilibrium configuration at time —oo. Let F'(w) denote the Fourier transform
of F(t).

'For the rest of this problem we will not use the summation convention.



(b)

(e)

(f)

2m
21

29

Construct the Lagrangian for the system without the force and find the normal modes
and frequencies. Then include the external force, and find the resulting equations of
motion.

Solve for the motion of both masses (expressed as an integral involving the time-
dependent force).

Find the total work done on the system by the external force, W = E(+o00) — E(—00).
Show that it can be expressed in the form

w— [ Z @) (48)

with y(w) real and positive. x(w) is known as the response function, and will be
proportional to a delta-functions in the absence of damping.

If a small damping term is added to each equation of motion, so m;z; — m;Z; + m;nz;,
make an educated guess how this qualitatively changes the response function x(w) and
make a sketch of x(w).

(Optional) With the dissipation described in the previous item, again find the total
work done by the force on the system. (W is not equal to E(co) — E(—00), since the
work done is ultimately dissipated away.) Determine y(w) in this case.



(a) The kinetic term is

1 1
T = 5(Qm)zf + §mz§ (49)
The potential term is
1 1
While the force term adds
L= F(t)z (51)

Differentiation of L =T — U + L gives

Cr o) ()= )+ () -

(b) Let us look for some normal modes. We find the eigenvectors of the eigenvalue problem

o (2m 0\ (u1) (2 —k\ [w
w < 0 m) <u2> - (—k‘ k Us (53)
N——— N————
M K
which leads to I
=—(2+£V2 4
wi =2 (24 VD) (54
with eigenmodes
B, = (if) (55)
which satisfy
KEy = —w*ME. (56)

The solution is expanded in terms of this basis

(29) = 2B + 2B 57
In the eigen-mode bases we can expand the force
()= () () o[ 28]

Then the equation of motion for Z, and Z_ read

M [<Z++wiz++&t>) E, + <Z+w2+w) E] =0 (59)

4m 4dm

We note that the vectors are orthogonal with M as a weight:

ETME_=0, (60)
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implying that
F(t)

Z 27, =—7 61
+twiZy am (61a)
.. F(t)

Z_+wZ_ =—=* 61b
+w? pr (61b)
These equations are solved directly using the green function
= F(to)
Z4(t) = dtoGr(t — tg)——= 62
L) = [ nGalt—10) S (62)
where _ Py
Gty o) = 0(t — 1) 2=l 1) (63)
Wt
(c) Then the total work on the system is
W= / dEF (1) (8) (64)
yielding
W= / dtF(t) (22’+ + 22'_) (65)

We worked this out in the previous homework. For a single oscillator with a force F'(t)
mi + mwix = F(t) (66)

The energy is

2

m 1 o , 1
B0 = 1o = 5| [ atoe )| = oL P (o7
The problem is almost identical here, but we should replace
F(t
F(p) 10 (63)
4
as shown by the equation of motion in Eq. (61a).
° F(t) - F(t) -
W/:i/ ¢ﬁ8><l i)Z++— i)Z_ (69)
1
=8——— [|F(wy)]* + | F(w-)]?
S5 g5 [P @)+ [P ) (70)
1
= 1P ()P F ()] (1)
So the response function is
1
X(w) = . 270 (w — wi) + 270 (w — w_) + 270 (w + wy) + 270 (w + w_)] (72)

11



(d) If the damping is small each of the J-functions of the previous part is smeared. We may
proceed a bit differently.

W= / TR (22’+ + 22_> (73)

F(to)
4m

W :/: it /_Z dty F (1) (2 ACR(t — tow) ) 4 w_)) (74)

Now we use the properties of Fourier transformations to express the result in Fourier
space. We use that

/th(t) 0 B(t) :/Z—:A(—w) (—iwB(w)) (75)
with A(t) = F(t) and

0,B(t) = / "ty 8tGR(t—t0;w+)FQ (7:) | (76)

oo

We have also haved used the fact that each time derivative simply adds a (—iw) in Fourier
space, i.e. the following are Fourier transform pairs:

/ dte ™ P B(t) = (—iw)" B(w). (77)

We then use that the Fourier transform of a convolution is the product of Fourier transforms,
ie. if

B(t) = /OO dty C(t —to) D(to), (78)
Then
B(w) = /dt e“' B(t) = C(w)D(w). (79)

If these properties of Fourier transforms are not familiar take charge and learn about them
on your own. We have finally

F

Fourier Transform of Eq. 76 = —iwB(w) = —iwGg(w; wy ) ) : (80)
and thus we have
1 < dw .

W “m | o F(—w)(—iwGr(w;w))F(w) + (wy = w_) (81)

The retarded Green function in Fourier space was worked out in class
Crlwios) == (52)

A + w? —iwn
2 2 :

(—w? +wi) iwn (83)

T W) (wn)? (WP — W)+ (wn)?

12



T

10,,,

w Im Ggr(w;wg)

w/ wg

The real part of Ggr(w) is even, while the imaginary part of Gr(w) is odd. The imaginary
part of the retarded Green function discussed in class is

w?n
wImGg(w;wy) = Tl t 2T (o) (84)
and is shown below.
We also use that F(—w) = F*(w) if F(t) is real. This means that
W= [ G2 IF)P lhnGr(wsws) + (or > w) (55)
2m J_ 27
We find finally
X(w) = L (WwImGg(w;wy) + (wy = w-)] (86)

2m
In the limit that the damping coefficient becomes zero, the result passes to part (c), since

TG (W, wo) — %TW 15(0 — wo) + 6w + wo)] (87)

as is clear from the figure above.
We show the result for y(w) in Fig. 2
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Figure 2: The four peaks are at w = +w, and w = +w_
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