Problem 1. Oscillations with similar frequencies

Consider two particles of mass m coupled to the walls via springs with spring constant
k = mw?2. The two particles are weakly coupled by a third spring with spring constant
k' = mw'? as shown below. The particles can move only in the a-direction, and the springs
are unstretched when the system is at rest. Assume that W’ < wy.

K’ k

m m

(a) If at time ¢ = 0 the left particle is displaced by an initial position zy and the right
particle is at rest, determine the subsequent oscillations of the system.

(b) Plot qualitatively x(¢) and z5(t) in regime where k' < k. Show all relevant features.
Answer the following question: given a signal which is a sum of sinusoids

A cos(wit) + B cos(wat + ¢) (1)

what is required to have prominent beats? Justify your answer with math.



Solution
The equations of motion are given by Newtons Laws.

(a) The equations of motion are

mil = — k.fl + kl(iCQ - 513'1) s (2)

miy = — k'(v9g — 1) — ko . (3)

et () == (U5 W) (6)- g

The matrix has the form (k + &")I + k'o, where o, is the pauli matrix. In the eigen-basis of
o, we have

The matrix reads

mwi = (k+k)E£k. (5)

£ = () ©)

To a good approximation since k > k' we have

The eigenvectors of o, are

wy =W+ Aw, (7)
where
_ k+F
W= m 9 (8)
_ (w/)2
Aw = 05 (9)

The initial conditions a simple 50-50 superposition of £, and F_ leading to the solution

1\ _ @ —tw4t @ —iw_t
<ZL‘2> = 5 e E+ + 9 € E_. (].0)

(b) Beats: We have a superposition of sinusoids with nearly equal frequency and equal
amplitude. This is a setup for very strong beats. So we need A ~ B and w; >~ ws.

Indeed we have taking the real part of

x1 =2 cos(wt) cos(Awt) , (11)
To = — xosin(wt) sin(Awt) . (12)

Fig. 1 shows the solution for w = 30Aw
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The solution for w = 30Aw




Problem 2. Four masses with a kick

Consider the four masses depicted below which are connected by springs. The springs have
spring constant k and the masses are m; = m and my = 2m. The masses move only in the
x direction.

(a)

(b)

mi mao mo mi

Write down a set of coordinates which parameterize deformations that are even and
odd and which are orthogonal to the zero modes.

Write down the Lagrangian of the system in terms of the coordinates of part (a), and
the center of mass coordinate. Determine the normal modes. You should only have to
find the eigenvectors of one 2 x 2 matrix.

You mash wish to use Mathematica for making the substitution of (a). I found the
frequencies to be

, 2% k 3k
w'=— — —

0. 13
m’  2m’  2m’ (13)

where the first two are the even modes, and the last two are the odds modes

If the left most mass is given an impulsive kick with force F'(t) = Pyd(t) at time ¢t = 0,
determine the positions of the particles at subsequent times. In what frame is the
subsequent motion periodic?



Solution

(a) We parametrize two even modes by coordinates

and

The zero mode is

and the associated odd deformation is parametrized by the center of mass coordinate

Finally the only other odd mode which can be orthogonal to Ej takes the form

ﬁ: ql(l,0,0, —1)

ﬁ QQ<O,1,—1,0)
Ey=(1,1,1,1)

i = XE,

U= (ZL’l,JIQ,Ig,ZE4) = Q3<b, -1, —1,b)

Requiring it have no shift in the center of mass gives

bn—2m —2m+bm =0 b=2

To summarize we use coordinates

Ty
T2
T3
Ty

(b) Take the Lagrangian

1 0 2 1
0 1 —1 1
0 + q2 1 +q3 1 + X 1
—1 0 2 1

1 o
L= §m,~j:t’:t3 —-U

where m;; = diag(m, 2m, 2m, m) and

1 1 1
U= 5]6(33'2 — $1)2 + 5]5(.1'3 — 1’2)2 + §k($4 — 1‘3)2

Making the substitutings

with

1

1 1 :
AL:5(%mﬁ+4mﬁ)+—1%nﬁ+~%ﬂmX2—U

U:

DO | —

2 2

1
@kmf—4m@—%&£)+§1wm§

(14)

(15)

(16)

(21)

(22)

(23)

(24)



Reading off from the lagrangian we have immediately two normal modes parametrized by g3
and X with frequencies.

wy =0 (25)
B =2 (26)
The equations of ¢; and ¢y are coupled
(08 () -5 0) G e
Solving the 2 x 2 evalue problem we have
(28)

(29)

(Z) - (—11> +Q @ (30)

In terms of the original coordinates we have

with defformations

1 1 0 2 1
x 0 1 —1 1
2 =(Q1 +2Q2) + (=Q1 + Q2) + a3 + X (31)
T3 0 —1 —1 1
Ty -1 0 2 1
or
T 1 2 2 1
o P S 1 ~1 1
s Qul | [+T@| (| +tas| _{|+X], (32)
Ty —1 -2 2 1
(33)
The associated frequencies are given by (in order)
2k k 3k
2 2 2 2
Wi m’ Wy o’ Wi =5 m’ Wo (34)

One can easily verify that
1 . . . 1
L= 3 6mQ? + 12mQ3 + 12mgs + 6mX2] -3 [12kQ7 + 6kQ3 + 18kq; ] (35)

B

- In this fame particle 1 moves

(¢) The motion is periodic in the CM-frame, vy =
initially with velocity

Vo1 = DVem (36)
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while the others move with velocity
Vo2 = Vo3 = Vo4 = —VUem (37)

So we have
X = vepmt (38)

The general solution for a simple harmonic oscillator with initial displcement xy and initial
velocity vy is
v
x = 10 cos(wt) + — sin(wt) (39)
w

We have only initial velocities, so our solution takes the form

T 1 2 2
To sin(wit) | —1 sin(wst) | 1 sin(wst) | —1
=V Ve Ve 40
s Q. | Ve | Ve, 1 (40)
Ty —1 —2 2
The values of V1, Vo, and Vs are given by the initial conditions
5 1 2 2
-1 -1 1 -1
Vem —1 == VQI 1 + VQQ 1 + VQg 1 (4:].)
-1 -1 -2 2
We can use the fact that the eigenvectors are orthogonal with metric
1
2
M=m 5 (42)
1
Denoting
5
- -1
‘/E) - Ucm _1 ’ (43)
-1
We have
Vo By
Vo, = = Vem 44
@ =p T (44)
Vo - B
@=p F =" (45)
Vo - Ej
Vos = = Uem 4
@=p E " (46)
(47)



Putting together the ingrediants in the original frame

T 1 2
| sin(wit) [ -1 sin(wst) | 1
373 - cm (,(_]1 1 cm ws _ 1
Ty —1 -2

—_ = =

(48)



Problem 3.  (Goldstein) A molecule with a right triangle

The equilibrium configuration of a molecule consists of three identical atoms of mass m at
the vertices of a 45° right triangle connected by springs of equal force constant k. The atoms
are constrained to move in the xy plane. We will determine the modes of oscillation of this
molecule.

Zero Modes:

(a) The vectors in the space of displacements are labelled by

(b)

Cj = (37173/1,1327192755371/3) (49)

where (x1,71) are the coordinates of particle 1, etc. Show that a displacement corre-
sponding to a global rotation parameterized by the angle 06 around the z axis coming
out of the page is

Qrot—n = adl (1,—3,1,3,—2,0).. (50)

Here we have chosen the long-length of the triangle to be 6a and the height of the
triangle to be 3a, the origin is taken to be the center of mass.

Y
3 ¥

3a

‘?
:

6a

Write down the other zero modes parametrized by the coordinates X, and Y.y,.

Vibrational Modes:

(c)

Under a reflection over the y axis the dlsplacements Q are mapped to some new dis-
placements Q Explain qualitatively why Q

Q — Q = (&17g17£27g27£37g3) - £ — X2,Y2, —T1, Y1, _m3ay3) .

We say that a vector is odd under reflection if Q = —Cj and even under reflection

if Q = Cj Since the problem is symmetric under reflections, the eigenmodes will be
either even or odd. The rotation in Eq. 50 is an eigenmode with zero eigenvalue. Is
this mode even or odd?

Show that there is only one odd basis vector (parameterized by a coordinate g,(t))
which is orthogonal to the three zero modes and determine its form. Then write
down two (somewhat arbitrary) even basis vectors parameterized by two generalized
coordinates ¢;(t) and g2(t) which are orthogonal to the zero modes, which you will use
to parametrize the even oscillations.



(e) Write down the Lagrangian of the system using the six well chosen coordinates
(Xem, Yems 60, 4o, q1, 2) instead of (z1, y1, Z2, Yo, T3, Y3).

(f) Find the eigen-frequencies of the system and qualitatively sketch the non-zero vibra-
tional modes. You should find

k 2k k
w2:3—,—,— (51)
m’m’m
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Solution:

(a) There are two translational zero modes and one rotational zero mode. If the vector

space of displacements is denoted

—

Q = (71,Y1, T2, Y2, T3, Y3) (52)
Then the translational zero modes in the x and y directions are

T, =(1,0,1,0,1,0) (53)

Yy (0’170717()’]-) (54)

To work out the rotational zero modes we need to set up a coordinate system Placing
the center of mass at the origin, the coordinates of the atoms are

710, 720, 7’30 (55)
If we call the long length 6a then
T10 :(—3(1,, —CL) =N (56)
ro0 =(3a, —a) = ny (57)
r30 =(0,2a) = nj (58)

The disturbances drawn in the figure are orthogonal to these vectors. Thus the vector
displacement associated with the first atom is

z X 1y = (a,—3a) =my (59)

and similarly

z X r19 =(a,—3a) = my (60)
z X 199 =(a,3a) = my (61)
zZ X T3p :<—2(I, 0) = msg (62)
Thus the rotational zero mode is
R.=a(1,-3,1,3,-2,0) = (my, my, m3) (63)

Now we perturb the problem But in general we consider Cj which lies in a subspace
orthogonal to the zero modes. We can also divide @ into directions which are even
/ odd under the reflection symmetries. So out the six numbers in Cj only three are
independent. One could choose these to be x1,y1, x2 in a pragmatic fashion. However
we are motivated by symmetry, and choose as our three independent coordinates

Ty = (r1 £ 139)/2 Y3 (64)
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So
((ry +2,m), (T4 —2,92), (3,93)) (65)

Requiring that this is orthogonal to the T, and R, yields a parameterization of a
vector which does not shit the center of mass or cause a rotation

- 1 1

Q= vy +a_,my— 593)» (vy —2_, —2y — §y3), (—224,y3)) (66)

A figure below shows the how the three displacements distort the molecule. We label
this displacements F, and E, and E),

- 1 1
G =y (L1 1,—1,-2,0) 40 (1,0,-1,0,0,0)+5 (0, ~5,0,—5,0,1) (67

From the symmetry of the problem the E, and Ey displacements can mix with each
other (they are both even under the reflection symmetry). But because of the symmetry
of the problem the E+ (which is odd under the reflection symmetry) can not mix with
E, and Ey, and therefore must be an eigenvector. We will verify this below.

The potential energy
1 0 \2 1 0 \2 1 0 \2

where for example

gab = \/(T()a + 7T — Top — Tb)2 (69)

and for example
6(1)2 = \/ ('I“m — ’1“02)2 = 6a (70)
Straightforward computer algebra gives

16 0 0 +
(x4 = y)k| 0 5  =3/2 _ (71)
0 —3/2 9/4 Ys

=K

8

U:

DO | —
S

The potential would not have been so simple if we did not use x4 and y3. Then the
kinetic energy in this basis is

1 8 0 0 T,
—mQ-Q—é(m T_ y'g)m 02 0 T_ (72)
00 3/2) \us
=M
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Then we can find the eigen frequencies through a straightforward diagonalization

det(K — w?M) =0 (73)
This yields
2
W2 Ok 2R (74)
m m m

As anticipated, one of the eigen mode only involves x
E. = Eyjm = (1,1,1,—1,-2,0) (75)

The remaining eigenvectors are superpositions of £, and E,,.
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