
Problem 1. Oscillations with similar frequencies

Consider two particles of mass m coupled to the walls via springs with spring constant
k = mω2

0. The two particles are weakly coupled by a third spring with spring constant
k′ = mω′2 as shown below. The particles can move only in the x-direction, and the springs
are unstretched when the system is at rest. Assume that ω′ � ω0.
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(a) If at time t = 0 the left particle is displaced by an initial position x0 and the right
particle is at rest, determine the subsequent oscillations of the system.

(b) Plot qualitatively x1(t) and x2(t) in regime where k′ � k. Show all relevant features.
Answer the following question: given a signal which is a sum of sinusoids

A cos(ω1t) +B cos(ω2t+ φ) (1)

what is required to have prominent beats? Justify your answer with math.
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Solution

The equations of motion are given by Newtons Laws.

(a) The equations of motion are

mẍ1 =− kx1 + k′(x2 − x1) , (2)

mẍ2 =− k′(x2 − x1)− kx2 . (3)

The matrix reads

−mω2

(
ξ1
ξ2

)
= −

(
(k + k′) k′

k′ (k + k′)

)(
ξ1
ξ2

)
. (4)

The matrix has the form (k + k′)I + k′σx where σx is the pauli matrix. In the eigen-basis of
σx we have

mω2
± = (k + k′)± k′ . (5)

The eigenvectors of σx are

E± =

(
1
∓1

)
(6)

To a good approximation since k � k′ we have

ω± = ω ±∆ω , (7)

where

ω =
k + k′

m
, (8)

∆ω =
(ω′)2

2ω
. (9)

The initial conditions a simple 50-50 superposition of E+ and E− leading to the solution(
x1
x2

)
=
x0
2
e−iω+tE+ +

x0
2
e−iω−tE− . (10)

(b) Beats: We have a superposition of sinusoids with nearly equal frequency and equal
amplitude. This is a setup for very strong beats. So we need A ' B and ω1 ' ω2.

Indeed we have taking the real part of

x1 =x0 cos(ωt) cos(∆ωt) , (11)

x2 =− x0 sin(ωt) sin(∆ωt) . (12)

Fig. 1 shows the solution for ω = 30∆ω
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Figure 1: The solution for ω = 30∆ω
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Problem 2. Four masses with a kick

Consider the four masses depicted below which are connected by springs. The springs have
spring constant k and the masses are m1 = m and m2 = 2m. The masses move only in the
x direction.

(a) Write down a set of coordinates which parameterize deformations that are even and
odd and which are orthogonal to the zero modes.

(b) Write down the Lagrangian of the system in terms of the coordinates of part (a), and
the center of mass coordinate. Determine the normal modes. You should only have to
find the eigenvectors of one 2× 2 matrix.

You mash wish to use Mathematica for making the substitution of (a). I found the
frequencies to be

ω2 =
2k

m
,

k

2m
,

3k

2m
, 0 . (13)

where the first two are the even modes, and the last two are the odds modes

(c) If the left most mass is given an impulsive kick with force F (t) = P0δ(t) at time t = 0,
determine the positions of the particles at subsequent times. In what frame is the
subsequent motion periodic?
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Solution

(a) We parametrize two even modes by coordinates

~u = q1(1, 0, 0,−1) (14)

and
~u = q2(0, 1,−1, 0) (15)

The zero mode is
E0 = (1, 1, 1, 1) (16)

and the associated odd deformation is parametrized by the center of mass coordinate

~u = X ~E0 (17)

Finally the only other odd mode which can be orthogonal to E0 takes the form

~u = (x1, x2, x3, x4) = q3(b,−1,−1, b) (18)

Requiring it have no shift in the center of mass gives

bm− 2m− 2m+ bm = 0 b = 2 (19)

To summarize we use coordinates
x1
x2
x3
x4

 = q1


1
0
0
−1

+ q2


0
1
−1
0

+ q3


2
−1
−1
2

+X


1
1
1
1

 (20)

(b) Take the Lagrangian

L =
1

2
mijẋ

iẋj − U (21)

where mij = diag(m, 2m, 2m,m) and

U =
1

2
k(x2 − x1)2 +

1

2
k(x3 − x2)2 +

1

2
k(x4 − x3)2 (22)

Making the substitutings

L =
1

2

(
2mq̇21 + 4mq̇22

)
+

1

2
12m q̇23 +

1

2
MtotẊ

2 − U (23)

with

U =
1

2

(
2k1q

2
1 − 4q1q2 + 6q22

)
+

1

2
18kq23 (24)
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Reading off from the lagrangian we have immediately two normal modes parametrized by q3
and X with frequencies.

ω2
0 =0 (25)

ω2
3 =

18

12

k

m
=

3

2

k

m
(26)

The equations of q1 and q2 are coupled

m

(
2 0
0 4

)(
q̈1
q̈2

)
= −k

(
2 −2
−2 6

)(
q1
q2

)
(27)

Solving the 2× 2 evalue problem we have

ω2
1 =

2k

m
(28)

ω2
2 =

k

2m
(29)

with defformations (
q1
q2

)
= Q1

(
1
−1

)
+Q2

(
2
1

)
(30)

In terms of the original coordinates we have
x1
x2
x3
x4

 =(Q1 + 2Q2)


1
0
0
−1

+ (−Q1 +Q2)


0
1
−1
0

+ q3


2
−1
−1
2

+X


1
1
1
1

 (31)

or 
x1
x2
x3
x4

 =Q1


1
−1
1
−1

+Q2


2
1
−1
−2

+ q3


2
−1
−1
2

+X


1
1
1
1

 (32)

(33)

The associated frequencies are given by (in order)

ω2
1 =

2k

m
, ω2

2 =
k

2m
, ω2

3 =
3

2

k

m
, ω2

0 = 0 (34)

One can easily verify that

L =
1

2

[
6mQ̇2

1 + 12mQ̇2
2 + 12mq̇23 + 6mẊ2

]
− 1

2

[
12kQ2

1 + 6kQ2
2 + 18kq23

]
(35)

(c) The motion is periodic in the CM-frame, vcm = P0

6m
. In this fame particle 1 moves

initially with velocity
v01 = 5vcm (36)
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while the others move with velocity

v02 = v03 = v04 = −vcm (37)

So we have
X = vcmt (38)

The general solution for a simple harmonic oscillator with initial displcement x0 and initial
velocity v0 is

x = x0 cos(ωt) +
v0
ω

sin(ωt) (39)

We have only initial velocities, so our solution takes the form
x1
x2
x3
x4

 = VQ1
sin(ω1t)

ω1


1
−1
1
−1

+ VQ2
sin(ω3t)

ω3


2
1
−1
−2

+ VQ3
sin(ω3t)

ω3


2
−1
−1
2

 (40)

The values of VQ1, VQ2, and VQ3 are given by the initial conditions

vcm


5
−1
−1
−1

 = VQ1


1
−1
1
−1

+ VQ2


2
1
−1
−2

+ VQ3


2
−1
−1
2

 (41)

We can use the fact that the eigenvectors are orthogonal with metric

M≡ m


1

2
2

1

 . (42)

Denoting

~V0 = vcm


5
−1
−1
−1

 , (43)

We have

VQ1 =
~V0 · ~E1

E1 · E1

= vcm (44)

VQ2 =
~V0 · ~E2

E2 · E2

= vcm (45)

VQ3 =
~V0 · ~E3

E3 · E3

= vcm (46)

(47)
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Putting together the ingrediants in the original frame
x1
x2
x3
x4

 = vcm
sin(ω1t)

ω1


1
−1
1
−1

+ vcm
sin(ω3t)

ω3


2
1
−1
−2

+ vcm
sin(ω3t)

ω3


2
−1
−1
2

+ vcmt


1
1
1
1

 (48)
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Problem 3. (Goldstein) A molecule with a right triangle

The equilibrium configuration of a molecule consists of three identical atoms of mass m at
the vertices of a 45o right triangle connected by springs of equal force constant k. The atoms
are constrained to move in the xy plane. We will determine the modes of oscillation of this
molecule.

Zero Modes:

(a) The vectors in the space of displacements are labelled by

~Q = (x1, y1, x2, y2, x3, y3) (49)

where (x1, y1) are the coordinates of particle 1, etc. Show that a displacement corre-
sponding to a global rotation parameterized by the angle δθ around the z axis coming
out of the page is

~Qrot−z = aδθ (1,−3, 1, 3,−2, 0) . (50)

Here we have chosen the long-length of the triangle to be 6a and the height of the
triangle to be 3a, the origin is taken to be the center of mass.
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3

(b) Write down the other zero modes parametrized by the coordinates Xcm and Ycm.

Vibrational Modes:

(c) Under a reflection over the y axis the displacements ~Q are mapped to some new dis-

placements ~Q. Explain qualitatively why ~Q

~Q→ ~Q = (x1, y1, x2, y2, x3, y3) = (− x2, y2,−x1, y1,−x3, y3) .

We say that a vector is odd under reflection if ~Q = − ~Q and even under reflection

if ~Q = ~Q. Since the problem is symmetric under reflections, the eigenmodes will be
either even or odd. The rotation in Eq. 50 is an eigenmode with zero eigenvalue. Is
this mode even or odd?

(d) Show that there is only one odd basis vector (parameterized by a coordinate qo(t))
which is orthogonal to the three zero modes and determine its form. Then write
down two (somewhat arbitrary) even basis vectors parameterized by two generalized
coordinates q1(t) and q2(t) which are orthogonal to the zero modes, which you will use
to parametrize the even oscillations.
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(e) Write down the Lagrangian of the system using the six well chosen coordinates
(Xcm, Ycm, δθ, qo, q1, q2) instead of (x1, y1, x2, y2, x3, y3).

(f) Find the eigen-frequencies of the system and qualitatively sketch the non-zero vibra-
tional modes. You should find

ω2 =
3k

m
,
2k

m
,
k

m
(51)
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Solution:

(a) There are two translational zero modes and one rotational zero mode. If the vector
space of displacements is denoted

~Q = (x1, y1, x2, y2, x3, y3) (52)

Then the translational zero modes in the x and y directions are

~Tx =(1, 0, 1, 0, 1, 0) (53)

~Ty =(0, 1, 0, 1, 0, 1) (54)

To work out the rotational zero modes we need to set up a coordinate system Placing
the center of mass at the origin, the coordinates of the atoms are

r10, r20, r30 (55)

If we call the long length 6a then

r10 =(−3a,−a) ≡ n1 (56)

r20 =(3a,−a) ≡ n2 (57)

r30 =(0, 2a) ≡ n3 (58)

The disturbances drawn in the figure are orthogonal to these vectors. Thus the vector
displacement associated with the first atom is

z × r10 = (a,−3a) ≡m1 (59)

and similarly

z × r10 =(a,−3a) ≡m1 (60)

z × r20 =(a, 3a) ≡m2 (61)

z × r30 =(−2a, 0) ≡m3 (62)

Thus the rotational zero mode is

~Rz = a(1,−3, 1, 3,−2, 0) = (m1,m2,m3) (63)

(b) Now we perturb the problem But in general we consider ~Q which lies in a subspace

orthogonal to the zero modes. We can also divide ~Q into directions which are even
/ odd under the reflection symmetries. So out the six numbers in ~Q only three are
independent. One could choose these to be x1, y1, x2 in a pragmatic fashion. However
we are motivated by symmetry, and choose as our three independent coordinates

x± = (x1 ± x2)/2 y3 (64)
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So
((x+ + x−, y1), (x+ − x−, y2), (x3, y3)) (65)

Requiring that this is orthogonal to the Tx,y and Rz yields a parameterization of a
vector which does not shit the center of mass or cause a rotation

~Q = ((x+ + x−, x+ −
1

2
y3), (x+ − x−,−x+ −

1

2
y3), (−2x+, y3)) (66)

A figure below shows the how the three displacements distort the molecule. We label
this displacements ~E+ and ~Ex and ~Ey

~Q = x+ (1, 1, 1,−1,−2, 0)︸ ︷︷ ︸
~E+

+x− (1, 0,−1, 0, 0, 0)︸ ︷︷ ︸
~Ex

+y3 (0,−1

2
, 0,−1

2
, 0, 1)︸ ︷︷ ︸

~Ey

(67)

From the symmetry of the problem the ~Ex and ~Ey displacements can mix with each
other (they are both even under the reflection symmetry). But because of the symmetry

of the problem the ~E+ (which is odd under the reflection symmetry) can not mix with
~Ex and ~Ey, and therefore must be an eigenvector. We will verify this below.

The potential energy

U =
1

2
k(`12 − `o12)2 +

1

2
k(`31 − `o31)2 +

1

2
k(`32 − `o32)2 (68)

where for example

`ab =
√

(r0a + ra − r0b − rb)2 (69)

and for example

`o12 =
√

(r01 − r02)2 = 6a (70)

Straightforward computer algebra gives

U =
1

2

(
x+ x− y3

)
k

16 0 0
0 5 −3/2
0 −3/2 9/4


︸ ︷︷ ︸

≡K

x+x−
y3

 (71)

The potential would not have been so simple if we did not use x± and y3. Then the
kinetic energy in this basis is

1

2
mQ̇ · Q̇ =

1

2

(
ẋ+ ẋ− ẏ3

)
m

8 0 0
0 2 0
0 0 3/2


︸ ︷︷ ︸

≡M

ẋ+ẋ−
ẏ3

 (72)
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Then we can find the eigen frequencies through a straightforward diagonalization

det(K − ω2M) = 0 (73)

This yields

ω2 =
3k

m
,
2k

m
,
k

m
(74)

As anticipated, one of the eigen mode only involves x+

~E+ = E2k/m = (1, 1, 1,−1,−2, 0) (75)

The remaining eigenvectors are superpositions of ~Ex and ~Ey.
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