Problem 1. A particle in a magnetic field

(a) Write down the Lagrangian and Hamiltonian for a particle in a magnetic field, $\boldsymbol{B}(\boldsymbol{r})$. Compute the Poisson brackets of velocity:

$$
\left\{v_{i}, v_{j}\right\}
$$

(b) Prove that the value of any function $f(q(t), p(t))$ of coordinates and momenta of a system at a time t can be expressed in terms of the values of p and q at $t=0$ as follows:

$$
\begin{equation*}
f=f_{0}+\frac{t}{1!}\left\{f_{0}, H\right\}+\frac{t^{2}}{2!}\left\{\left\{f_{0}, H\right\}, H\right\}+\ldots \tag{1}
\end{equation*}
$$

where $f_{0}=f(p(0), q(0))$. Apply this formula to evaluate $p^{2}(t)$ for a harmonic oscillator.
(c) Evaluate $\boldsymbol{v}(t)$ for a particle in a constant magnetic field \boldsymbol{B}_{0} using the results of this problem.

Problem 2. Canonical transformations and Poisson Brackets

Consider an infinitesimal change of coordinates, which is not necessarily canonical:

$$
\begin{align*}
& q \rightarrow Q=q+\lambda \frac{d Q(q, p)}{d \lambda} \tag{2}\\
& p \rightarrow P=p+\lambda \frac{d P(q, p)}{d \lambda} \tag{3}
\end{align*}
$$

Show that if the Poisson bracket is to remain fixed under the transformation, i.e.

$$
\begin{align*}
& \{Q, P\}=1, \tag{4}\\
& \{P, P\}=0, \tag{5}\\
& \{Q, Q\}=0, \tag{6}
\end{align*}
$$

then there must exist a $G(q, p)$ which generates the transformation. (Hint recall the following theorem: if a vector field is curl free, $\nabla \times \boldsymbol{v}=0$ it may be written as a gradient of a scalar function, $\boldsymbol{v}=-\nabla \phi$.)

Problem 3. 2d isotropic oscillator

Consider the 2d harmonic oscillator which is isotropic

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+\left(\omega_{0} x_{1}\right)^{2}+\left(\omega_{0} x_{2}\right)^{2}\right) \tag{7}
\end{equation*}
$$

This is an example of an integrable system, which means if the phase space consists of $2 n$ generalized coordinates there are $2 n-1$ constants of the motion. We will find and interpret these constants here.
(a) Show that

$$
\begin{equation*}
J_{3}(\boldsymbol{r}, \boldsymbol{p})=\frac{1}{2}\left(x_{1} p_{2}-p_{1} x_{2}\right) \tag{8}
\end{equation*}
$$

generates rotations in the plane. Why is it constant in time?
(b) Determine the infinitesimal transformation generated by

$$
\begin{equation*}
J_{1}(\boldsymbol{r}, \boldsymbol{p})=\frac{1}{2 \omega_{0}}\left(\frac{1}{2} p_{1}^{2}+\frac{1}{2} \omega_{0}^{2} x_{1}^{2}-\frac{p_{2}^{2}}{2}-\frac{1}{2} \omega_{0}^{2} x_{2}^{2}\right) \tag{9}
\end{equation*}
$$

and describe this transformation qualitatively ${ }^{1}$. Show that the computed transformation leaves the Hamiltonian invariant, and that this implies that $J_{1}=\left\{J_{1}, H\right\}=0$. Give a physical interpretation of J_{1}.
(c) Use the Poisson theorem to deduce a third conserved quantity J_{2} :

$$
\begin{equation*}
J_{2}=\frac{1}{2 \omega_{0}}\left(p_{1} p_{2}+\omega_{0}^{2} x_{1} x_{2}\right) \tag{10}
\end{equation*}
$$

Determine the associated infinitesimal canonical transformation generated by this conservation law, and verify that it is a symmetry of the Hamiltonian.
(d) We have found three integrals of motion. Using similar manipulations to part (c), one may show that

$$
\begin{equation*}
\left\{J_{i}, J_{j}\right\}=i \epsilon_{i j k} J_{k} \tag{11}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left(\frac{H}{2 \omega_{0}}\right)^{2}=J_{1}^{2}+J_{2}^{2}+J_{3}^{2} \tag{12}
\end{equation*}
$$

Thus any random orbit is selected by choosing J_{1}, J_{2}, J_{3} to lie on the surface of a sphere. Describe the motion of the orbit in each of the following limiting cases
(i) $J_{1}=J_{2}=0$
(ii) $J_{2}=J_{3}=0$
(iii) $J_{1}=J_{3}=0$

[^0](e) (Optional:) Consider the $2 D$ oscillator in cylindrical coordinates
\[

$$
\begin{equation*}
L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{1}{2} \omega_{0}^{2} r^{2} \tag{13}
\end{equation*}
$$

\]

Consider a particle in this potential is going around in a circle. At $t=0$ it is on the x axis, and is then given a small extra push of impulse Δp in the y direction. Using the integrals of motion explain (without detailed calculation) why the perturbed orbit remains closed.

[^0]: ${ }^{1}$ For example in part (a) we qualitatively said that J_{3} generates rotations in the plane. Give a similar qualitative description for J_{1}.

