
Problem 1. A particle in a magnetic field

(a) Write down the Lagrangian and Hamiltonian for a particle in a magnetic field, B(r).
Compute the Poisson brackets of velocity:

{vi, vj}

(b) Prove that the value of any function f(q(t), p(t)) of coordinates and momenta of a
system at a time t can be expressed in terms of the values of p and q at t = 0 as
follows:

f = f0 +
t

1!
{f0, H}+

t2

2!
{{f0, H}, H}+ . . . , (1)

where f0 = f(p(0), q(0)). Apply this formula to evaluate p2(t) for a harmonic oscillator.

(c) Evaluate v(t) for a particle in a constant magnetic field B0 using the results of this
problem.
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Problem 2. Canonical transformations and Poisson Brackets

Consider an infinitesimal change of coordinates, which is not necessarily canonical:

q → Q =q + λ
dQ(q, p)

dλ
, (2)

p→ P =p+ λ
dP (q, p)

dλ
. (3)

Show that if the Poisson bracket is to remain fixed under the transformation, i.e.

{Q,P} =1 , (4)

{P, P} =0 , (5)

{Q,Q} =0 , (6)

then there must exist a G(q, p) which generates the transformation. (Hint recall the following
theorem: if a vector field is curl free, ∇× v = 0 it may be written as a gradient of a scalar
function, v = −∇φ.)
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Problem 3. 2d isotropic oscillator

Consider the 2d harmonic oscillator which is isotropic

H =
1

2

(
p21 + p22 + (ω0x1)

2 + (ω0x2)
2
)

(7)

This is an example of an integrable system, which means if the phase space consists of 2n
generalized coordinates there are 2n− 1 constants of the motion. We will find and interpret
these constants here.

(a) Show that

J3(r,p) =
1

2
(x1p2 − p1x2) (8)

generates rotations in the plane. Why is it constant in time?

(b) Determine the infinitesimal transformation generated by

J1(r,p) =
1

2ω0

(
1

2
p21 +

1

2
ω2
0x

2
1 −

p22
2
− 1

2
ω2
0x

2
2

)
, (9)

and describe this transformation qualitatively1. Show that the computed transforma-
tion leaves the Hamiltonian invariant, and that this implies that J̇1 = {J1, H} = 0.
Give a physical interpretation of J1.

(c) Use the Poisson theorem to deduce a third conserved quantity J2:

J2 =
1

2ω0

(
p1p2 + ω2

0x1x2
)

(10)

Determine the associated infinitesimal canonical transformation generated by this con-
servation law, and verify that it is a symmetry of the Hamiltonian.

(d) We have found three integrals of motion. Using similar manipulations to part (c), one
may show that

{Ji, Jj} = iεijkJk , (11)

and that (
H

2ω0

)2

= J2
1 + J2

2 + J2
3 (12)

Thus any random orbit is selected by choosing J1, J2, J3 to lie on the surface of a sphere.
Describe the motion of the orbit in each of the following limiting cases

(i) J1 = J2 = 0

(ii) J2 = J3 = 0

(iii) J1 = J3 = 0

1For example in part (a) we qualitatively said that J3 generates rotations in the plane. Give a similar
qualitative description for J1.
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(e) (Optional:) Consider the 2D oscillator in cylindrical coordinates

L =
1

2
(ṙ2 + r2θ̇2)− 1

2
ω2
0r

2 (13)

Consider a particle in this potential is going around in a circle. At t = 0 it is on the
x axis, and is then given a small extra push of impulse ∆p in the y direction. Using
the integrals of motion explain (without detailed calculation) why the perturbed orbit
remains closed.
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