
Problem 1. A particle in a magnetic field

(a) Write down the Lagrangian and Hamiltonian for a particle in a magnetic field, B(r).
Compute the Poisson brackets of velocity:

{vi, vj}

(b) Prove that the value of any function f(q(t), p(t)) of coordinates and momenta of a
system at a time t can be expressed in terms of the values of p and q at t = 0 as
follows:

f = f0 +
t

1!
{f0, H}+

t2

2!
{{f0, H}, H}+ . . . , (1)

where f0 = f(p(0), q(0)). Apply this formula to evaluate p2(t) for a harmonic oscillator.

(c) Evaluate v(t) for a particle in a constant magnetic field B0 using the results of this
problem.
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(a) For B(r), the action of the particle in an electromagnetic field is

S =

∫
dt

1

2
mv̇2 + e

v

c
·A (2)

Then computing the momentum

p =
∂L

∂(∂tv)
= mv +

e

c
A(r) (3)

So the Poisson brackets of velocity read

{vi, vj} =
1

m2
{pi −

e

c
Ai(r), pj −

e

c
Aj(r)} (4)

Using the fact that

{pi, pj} =0 (5)

{pi, xj} =− δij (6)

we can deduce that for any function f(r)

{pi, f(r)} = − ∂f
∂xi

(7)

You can prove this by induction for xn. Then any analytic function (which has a Taylor
series) is also proved.

{vi, vj} =
e

m2c

(
∂Aj

∂xi
− ∂Ai

∂xj

)
=

e

m2c
εijkB

k (8)

where we used that B = ∇×A.

(b) One simply uses a Taylor series expansion of f(p(t), q(t)) as a function of t. The first
few terms are (at any time)

ḟ(p, q) ={f(p, q), H} (9)

f̈(p, q) ={ḟ(p, q), H} = {{f,H}, H} (10)
...
f(p, q) ={f̈(p, q), H} = {{{f,H}, H}, H} (11)

(c) The Hamiltonian is

H =
1

2
mv(p, r)2 (12)

Then evaluating the Poisson bracket

dvj
dt

= {vj, H} =
1

mc
εjikv

iBk (13)

2



yields the right equation of motion. Taking B0 along the z direction Our commutators read

{vx, H} =
eB0

mc
vy (14)

{vy, H} =− eB0

mc
vx (15)

{vz, H} =0 (16)

Then higher commutators read

{{vx, H}, H} =−
(
eB0

mc

)2

vx (17)

{{vy, H}, H} =−
(
eB0

mc

)2

vy (18)

and still higher read

{{{vx, H}, H}, H} =−
(
eB0

mc

)3

vy (19)

{{{vy, H}, H}, H} = +

(
eB0

mc

)3

vy (20)

etc
So we find, using the result of the previous problem, that first of all

vz(t) = vz(0) . (21)

Then for vx and vy we have after collecting terms proportional to vx(0) and vy(0) :

vx(t) = vx(0)

[
1− t2

2!

(
eB0

mc

)2

+ . . .

]
+ vy(0)

[
eB0

mc
− t3

3!

(
eB0

mc

)3

+ . . .

]
(22)

vy(t) = vy(0)

[
1− t2

2!

(
eB0

mc

)2

+ . . .

]
− vx(0)

[
eB0

mc
− t3

3!

(
eB0

mc

)3

+ . . .

]
(23)

i.e.

vx(t) =vx(0) cos(eB0/mct) + vy(0) sin(eB0/mct) (24)

vy(t) =− vx(0) sin(eB0/mct) + vy(0) cos(eB0/mct) (25)

Of course
vx(t)2 + vy(t)

2 = vx(0)2 + vy(0)2 (26)

indicating that the particle is going in a circle.
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Problem 2. Canonical transformations and Poisson Brackets

Consider an infinitesimal change of coordinates, which is not necessarily canonical:

q → Q =q + λ
dQ(q, p)

dλ
, (27)

p→ P =p+ λ
dP (q, p)

dλ
. (28)

Show that if the Poisson bracket is to remain fixed under the transformation, i.e.

{Q,P} =1 , (29)

{P, P} =0 , (30)

{Q,Q} =0 , (31)

then there must exist a G(q, p) which generates the transformation. (Hint recall the following
theorem: if a vector field is curl free, ∇× v = 0 it may be written as a gradient of a scalar
function, v = −∇φ.)
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Solution:
Substituting, we require

{q + λ∆q, p+ ∆p} =1 (32)

leading to
λ{∆q, p}+ λ{q,∆p} = 0 (33)

With the definition of the Poisson bracket

{A,B} =
∂A

∂q

∂B

∂p
− ∂B

∂q

∂A

∂p
(34)

We find

λ

(
∂∆q

∂q
+
∂∆p

∂p

)
= 0 . (35)

It is helpful here to use the 2D notation from class writing

v = (−∆p,∆q) . (36)

The vector v is the the symplectic matrix times (∆q,∆p)(
−∆p
∆q

)
=

(
0 −1
1 0

)(
∆q
∆p

)
(37)

Thus the condition {Q,P} = 1 is written

∂xvy − ∂yvx = 0 . (38)

Given this curl free result we we can write v as the gradient of a scalar

v = ∇G = (∂qG, ∂pG) = (−∆p,∆q) . (39)

Thus the transformation rule is

q → Q =q + λ∂pG (40)

p→ P =p− λ∂qG (41)

Problem 3. 2d isotropic oscillator

Consider the 2d harmonic oscillator which is isotropic

H =
1

2

(
p21 + p22 + (ω0x1)

2 + (ω0x2)
2
)

(42)

This is an example of an integrable system, which means if the phase space consists of 2n
generalized coordinates there are 2n− 1 constants of the motion. We will find and interpret
these constants here.
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(a) Show that

J3(r,p) =
1

2
(x1p2 − p1x2) (43)

generates rotations in the plane. Why is it constant in time?

(b) Determine the infinitesimal transformation generated by

J1(r,p) =
1

2ω0

(
1

2
p21 +

1

2
ω2
0x

2
1 −

p22
2
− 1

2
ω2
0x

2
2

)
, (44)

and describe this transformation qualitatively1. Show that the computed transforma-
tion leaves the Hamiltonian invariant, and that this implies that J̇1 = {J1, H} = 0.
Give a physical interpretation of J1.

(c) Use the Poisson theorem to deduce a third conserved quantity J2:

J2 =
1

2ω0

(
p1p2 + ω2

0x1x2
)

(45)

Determine the associated infinitesimal canonical transformation generated by this con-
servation law, and verify that it is a symmetry of the Hamiltonian.

(d) We have found three integrals of motion. Using similar manipulations to part (c), one
may show that

{Ji, Jj} = iεijkJk , (46)

and that (
H

2ω0

)2

= J2
1 + J2

2 + J2
3 (47)

Thus any random orbit is selected by choosing J1, J2, J3 to lie on the surface of a sphere.
Describe the motion of the orbit in each of the following limiting cases

(i) J1 = J2 = 0

(ii) J2 = J3 = 0

(iii) J1 = J3 = 0

(e) (Optional:) Consider the 2D oscillator in cylindrical coordinates

L =
1

2
(ṙ2 + r2θ̇2)− 1

2
ω2
0r

2 (48)

Consider a particle in this potential is going around in a circle. At t = 0 it is on the
x axis, and is then given a small extra push of impulse ∆p in the y direction. Using
the integrals of motion explain (without detailed calculation) why the perturbed orbit
remains closed.

1For example in part (a) we qualitatively said that J3 generates rotations in the plane. Give a similar
qualitative description for J1.
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(a). Under infinitesimal transformation

x1 →x1 + λ
∂J3
∂p1

(49)

x2 →x2 + λ
∂J3
∂p2

(50)

which is is rotation

x1 →x′1 = x1 − λx2 (51)

x2 →x′2 = x2 + λx1 (52)

This a rotation in clockwise fashion of the coordinates (x1, x2) by an amount δθ = λ. It also
generates a similar rule for (p1, p2)

p1 →p′1 = p1 − λp2 (53)

p2 →p′2 = p2 + λp1 (54)

J3 is constant in time because this transformation rule leaves H unchanged. H is unchanged
because it is a rotation which leaves the norm of vectors fixed,

papa = p′ap
′
a, xaxa = x′ax

′
a . (55)

(b) The generator J1 yields the following transformation for x1, p1

ω0x1 → ω0x
′
1 =ω0x1 + λ

∂J1
∂p1

(56)

=ω0x1 +
λ

2
p1 (57)

p1 → p′1 =p1 − λ
∂J1
∂p1

(58)

=p1 −
λ

2
ω0x1 (59)

and an analogous relation for x2, p2

ω0x2 → ω0x
′
2 =ω0x2 + λ

∂J1
∂p2

(60)

=ω0x2 −
λ

2
p2 (61)

p2 → p′2 =p2 − λ
∂J1
∂p2

(62)

=p2 +
λ

2
ω0x2 (63)

This is a rotation in of the “vectors” (ω0x1, p1) and (ω0x2, p2) by an angle proportional to λ
and −λ respectively. The Hamiltonian involves the sum of squares of these vectors

H ∝ (p21 + (ω0x1)
2) + ((p2)

2 + (ω0x2)
2) (64)
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Each square is invariant under such rotations leaving H unchanged, and therefore the gen-
erator of this transformation J1 is conserved. J1 is the difference in energy between the
x-vibrations and the y-vibrations.

(c) The Poisson theorem says that if J1 is conserved and J3 then so is {J3, J1}. The proof is
straightforward using the Jacobi identity:

{J1, {J3, H}+ {J3, {H, J1}}+ {H, {J1, J3}} = 0 (65)

Since J1 and and J3 both commute the the Hamiltonian, i.e. {J1, H} = 0, we see that
{J1, J3} also commutes with the Hamiltonian, i.e. it is conserved locally.

Computing the necessary Poisson bracket

{J3, J1} ={1

2
(x1p2 − p1x2),

1

2ω0

(
1

2
p21 +

1

2
ω2
0x

2
1 −

p22
2
− 1

2
ω2
0x

2
2

)
} (66)

=
1

4ω0

{x1p2, 12(p21 − ω2
0x

2
2)} −

1

4ω0

{p1x2, 12(ω2
0x

2
1 − p22)} (67)

=
1

4ω0

(
p1p2 + ω2

0x1x2
)
− 1

4ω0

(−ω2
0x2x1 − p1p2) (68)

=
1

2ω0

(p1p2 + ω2
0x1x2) (69)

The transformation generated by this generator is

x1 →x′1 = x1 +
λ

2

p2
ω0

(70)

p1 →p′1 = p1 −
λ

2
ω0x2 (71)

x2 →x′2 = x2 +
λ

2

p1
ω0

(72)

p2 →p′2 = p2 −
λ

2
ω0x1 (73)

This is a rotation of the “vectors” (ω0x1, p2) and (ω0x2, p2) by λ/2. The Hamiltonian is sum
of the squares of these vectors

H ∝ (ω2
0x

2
1 + p22) + (ω2

0x
2
2 + p21) (74)

and is invariant under these rotations, since the lengths of these “vectors” are unchanged by
the rotation. J2 is related by a rotation to J1. Indeed of we rotate our coordinate system by
π/4, J1 becomes J2 and J2 becomes J1. This is easy to see. For a π/4 rotation

x′1 =
x1 + x2√

2
(75)

x′2 =
x1 − x2√

2
(76)
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and thus

x′1x
′
2 =

1

2
(x21 − x22) (77)

J2 is thus the difference in energy between the vibrations along the two diagonals.

(d) In the first case J1 = J2 = 0. The energy in the x, y direction is the same. Looking
at J1 this means that when the oscillator in the x1 direction has maximal potential energy
(p1 = 0, ω0x1 max), the oscillator in the y direction has maximal kinetic energy (p2 max,
ω0x2 = 0) and zero potential energy. The two oscillators in the x, y direction thus have equal
amplitude and are out of phase by π/2. Thus the motion is circular and this is a circular
orbit.

In the second case J2 = J3 = 0. The oscillator motion has no angular momentum. The
“orbital” motion is thus along a line. Since J2 is zero. We may set p2 = x2 = 0 (case1) or
p1 = x1 = 0 (case2). Then if J1 > 0 (case 1), J1 is simply the energy of the x1 motion of
oscillations along the x axis. If J1 < 0 then all of the linear motion is along the y axis.

In the final case J1 = J3 = 0 the energy of the x and y oscillators are equal. There is no
angular momentum J3 and thus the motion is linear. Since the energy of the two oscillators
(x1 direction and x2 direction) the the motion is along the diagonal. If J2 > 0 then the
motion picks one of the diagonals, and if J2 < 0 it picks the other. Examining the sign, we
see that at maximal displacement in the first quadrant, x1 = x2 = A, and p1 = p2 = 0, and
J2 is therefore positive. Thus if J2 > 0 the motion is along the diagonal in the first and third
quadrant. If J2 < 0 it is along the diagonal in the second and fourth.
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