Problem 1. A particle in a magnetic field

(a) Write down the Lagrangian and Hamiltonian for a particle in a magnetic field, $\boldsymbol{B}(\boldsymbol{r})$. Compute the Poisson brackets of velocity:

$$
\left\{v_{i}, v_{j}\right\}
$$

(b) Prove that the value of any function $f(q(t), p(t))$ of coordinates and momenta of a system at a time t can be expressed in terms of the values of p and q at $t=0$ as follows:

$$
\begin{equation*}
f=f_{0}+\frac{t}{1!}\left\{f_{0}, H\right\}+\frac{t^{2}}{2!}\left\{\left\{f_{0}, H\right\}, H\right\}+\ldots \tag{1}
\end{equation*}
$$

where $f_{0}=f(p(0), q(0))$. Apply this formula to evaluate $p^{2}(t)$ for a harmonic oscillator.
(c) Evaluate $\boldsymbol{v}(t)$ for a particle in a constant magnetic field \boldsymbol{B}_{0} using the results of this problem.
(a) For $\boldsymbol{B}(\boldsymbol{r})$, the action of the particle in an electromagnetic field is

$$
\begin{equation*}
S=\int d t \frac{1}{2} m \dot{\boldsymbol{v}}^{2}+e \frac{\boldsymbol{v}}{c} \cdot \boldsymbol{A} \tag{2}
\end{equation*}
$$

Then computing the momentum

$$
\begin{equation*}
\boldsymbol{p}=\frac{\partial L}{\partial\left(\partial_{t} \boldsymbol{v}\right)}=m \boldsymbol{v}+\frac{e}{c} \boldsymbol{A}(\boldsymbol{r}) \tag{3}
\end{equation*}
$$

So the Poisson brackets of velocity read

$$
\begin{equation*}
\left\{v_{i}, v_{j}\right\}=\frac{1}{m^{2}}\left\{p_{i}-\frac{e}{c} A_{i}(\boldsymbol{r}), p_{j}-\frac{e}{c} A_{j}(\boldsymbol{r})\right\} \tag{4}
\end{equation*}
$$

Using the fact that

$$
\begin{align*}
& \left\{p_{i}, p_{j}\right\}=0 \tag{5}\\
& \left\{p_{i}, x_{j}\right\}=-\delta_{i j} \tag{6}
\end{align*}
$$

we can deduce that for any function $f(\boldsymbol{r})$

$$
\begin{equation*}
\left\{p_{i}, f(\boldsymbol{r})\right\}=-\frac{\partial f}{\partial x^{i}} \tag{7}
\end{equation*}
$$

You can prove this by induction for x^{n}. Then any analytic function (which has a Taylor series) is also proved.

$$
\begin{equation*}
\left\{v_{i}, v_{j}\right\}=\frac{e}{m^{2} c}\left(\frac{\partial A_{j}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial x^{j}}\right)=\frac{e}{m^{2} c} \epsilon_{i j k} B^{k} \tag{8}
\end{equation*}
$$

where we used that $\boldsymbol{B}=\nabla \times \boldsymbol{A}$.
(b) One simply uses a Taylor series expansion of $f(p(t), q(t))$ as a function of t. The first few terms are (at any time)

$$
\begin{align*}
& \dot{f}(p, q)=\{f(p, q), H\} \tag{9}\\
& \ddot{f}(p, q)=\{\dot{f}(p, q), H\}=\{\{f, H\}, H\} \tag{10}\\
& \dddot{f}(p, q)=\{\ddot{f}(p, q), H\}=\{\{\{f, H\}, H\}, H\} \tag{11}
\end{align*}
$$

(c) The Hamiltonian is

$$
\begin{equation*}
H=\frac{1}{2} m v(\boldsymbol{p}, \boldsymbol{r})^{2} \tag{12}
\end{equation*}
$$

Then evaluating the Poisson bracket

$$
\begin{equation*}
\frac{d v_{j}}{d t}=\left\{v_{j}, H\right\}=\frac{1}{m c} \epsilon_{j i k} v^{i} B^{k} \tag{13}
\end{equation*}
$$

yields the right equation of motion. Taking B_{0} along the z direction Our commutators read

$$
\begin{align*}
& \left\{v_{x}, H\right\}=\frac{e B_{0}}{m c} v^{y} \tag{14}\\
& \left\{v_{y}, H\right\}=-\frac{e B_{0}}{m c} v^{x} \tag{15}\\
& \left\{v_{z}, H\right\}=0 \tag{16}
\end{align*}
$$

Then higher commutators read

$$
\begin{align*}
& \left\{\left\{v_{x}, H\right\}, H\right\}=-\left(\frac{e B_{0}}{m c}\right)^{2} v^{x} \tag{17}\\
& \left\{\left\{v_{y}, H\right\}, H\right\}=-\left(\frac{e B_{0}}{m c}\right)^{2} v^{y} \tag{18}
\end{align*}
$$

and still higher read

$$
\begin{align*}
& \left\{\left\{\left\{v_{x}, H\right\}, H\right\}, H\right\}=-\left(\frac{e B_{0}}{m c}\right)^{3} v^{y} \tag{19}\\
& \left\{\left\{\left\{v_{y}, H\right\}, H\right\}, H\right\}=+\left(\frac{e B_{0}}{m c}\right)^{3} v^{y} \tag{20}
\end{align*}
$$

etc
So we find, using the result of the previous problem, that first of all

$$
\begin{equation*}
v_{z}(t)=v_{z}(0) \tag{21}
\end{equation*}
$$

Then for v_{x} and v_{y} we have after collecting terms proportional to $v_{x}(0)$ and $v_{y}(0)$:

$$
\begin{align*}
& v_{x}(t)=v_{x}(0)\left[1-\frac{t^{2}}{2!}\left(\frac{e B_{0}}{m c}\right)^{2}+\ldots\right]+v_{y}(0)\left[\frac{e B_{0}}{m c}-\frac{t^{3}}{3!}\left(\frac{e B_{0}}{m c}\right)^{3}+\ldots\right] \tag{22}\\
& v_{y}(t)=v_{y}(0)\left[1-\frac{t^{2}}{2!}\left(\frac{e B_{0}}{m c}\right)^{2}+\ldots\right]-v_{x}(0)\left[\frac{e B_{0}}{m c}-\frac{t^{3}}{3!}\left(\frac{e B_{0}}{m c}\right)^{3}+\ldots\right] \tag{23}
\end{align*}
$$

i.e.

$$
\begin{align*}
& v_{x}(t)=v_{x}(0) \cos \left(e B_{0} / m c t\right)+v_{y}(0) \sin \left(e B_{0} / m c t\right) \tag{24}\\
& v_{y}(t)=-v_{x}(0) \sin \left(e B_{0} / m c t\right)+v_{y}(0) \cos \left(e B_{0} / m c t\right) \tag{25}
\end{align*}
$$

Of course

$$
\begin{equation*}
v_{x}(t)^{2}+v_{y}(t)^{2}=v_{x}(0)^{2}+v_{y}(0)^{2} \tag{26}
\end{equation*}
$$

indicating that the particle is going in a circle.

Problem 2. Canonical transformations and Poisson Brackets

Consider an infinitesimal change of coordinates, which is not necessarily canonical:

$$
\begin{align*}
& q \rightarrow Q=q+\lambda \frac{d Q(q, p)}{d \lambda}, \tag{27}\\
& p \rightarrow P=p+\lambda \frac{d P(q, p)}{d \lambda} . \tag{28}
\end{align*}
$$

Show that if the Poisson bracket is to remain fixed under the transformation, i.e.

$$
\begin{align*}
& \{Q, P\}=1, \tag{29}\\
& \{P, P\}=0, \tag{30}\\
& \{Q, Q\}=0, \tag{31}
\end{align*}
$$

then there must exist a $G(q, p)$ which generates the transformation. (Hint recall the following theorem: if a vector field is curl free, $\nabla \times \boldsymbol{v}=0$ it may be written as a gradient of a scalar function, $\boldsymbol{v}=-\nabla \phi$.)

Solution:

Substituting, we require

$$
\begin{equation*}
\{q+\lambda \Delta q, p+\Delta p\}=1 \tag{32}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\lambda\{\Delta q, p\}+\lambda\{q, \Delta p\}=0 \tag{33}
\end{equation*}
$$

With the definition of the Poisson bracket

$$
\begin{equation*}
\{A, B\}=\frac{\partial A}{\partial q} \frac{\partial B}{\partial p}-\frac{\partial B}{\partial q} \frac{\partial A}{\partial p} \tag{34}
\end{equation*}
$$

We find

$$
\begin{equation*}
\lambda\left(\frac{\partial \Delta q}{\partial q}+\frac{\partial \Delta p}{\partial p}\right)=0 \tag{35}
\end{equation*}
$$

It is helpful here to use the $2 D$ notation from class writing

$$
\begin{equation*}
\boldsymbol{v}=(-\Delta p, \Delta q) \tag{36}
\end{equation*}
$$

The vector \boldsymbol{v} is the the symplectic matrix times $(\Delta q, \Delta p)$

$$
\binom{-\Delta p}{\Delta q}=\left(\begin{array}{cc}
0 & -1 \tag{37}\\
1 & 0
\end{array}\right)\binom{\Delta q}{\Delta p}
$$

Thus the condition $\{Q, P\}=1$ is written

$$
\begin{equation*}
\partial_{x} v_{y}-\partial_{y} v_{x}=0 \tag{38}
\end{equation*}
$$

Given this curl free result we we can write \boldsymbol{v} as the gradient of a scalar

$$
\begin{equation*}
\boldsymbol{v}=\nabla G=\left(\partial_{q} G, \partial_{p} G\right)=(-\Delta p, \Delta q) . \tag{39}
\end{equation*}
$$

Thus the transformation rule is

$$
\begin{align*}
& q \rightarrow Q=q+\lambda \partial_{p} G \tag{40}\\
& p \rightarrow P=p-\lambda \partial_{q} G \tag{41}
\end{align*}
$$

Problem 3. 2d isotropic oscillator

Consider the 2d harmonic oscillator which is isotropic

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+\left(\omega_{0} x_{1}\right)^{2}+\left(\omega_{0} x_{2}\right)^{2}\right) \tag{42}
\end{equation*}
$$

This is an example of an integrable system, which means if the phase space consists of $2 n$ generalized coordinates there are $2 n-1$ constants of the motion. We will find and interpret these constants here.
(a) Show that

$$
\begin{equation*}
J_{3}(\boldsymbol{r}, \boldsymbol{p})=\frac{1}{2}\left(x_{1} p_{2}-p_{1} x_{2}\right) \tag{43}
\end{equation*}
$$

generates rotations in the plane. Why is it constant in time?
(b) Determine the infinitesimal transformation generated by

$$
\begin{equation*}
J_{1}(\boldsymbol{r}, \boldsymbol{p})=\frac{1}{2 \omega_{0}}\left(\frac{1}{2} p_{1}^{2}+\frac{1}{2} \omega_{0}^{2} x_{1}^{2}-\frac{p_{2}^{2}}{2}-\frac{1}{2} \omega_{0}^{2} x_{2}^{2}\right), \tag{44}
\end{equation*}
$$

and describe this transformation qualitatively ${ }^{1}$. Show that the computed transformation leaves the Hamiltonian invariant, and that this implies that $\dot{J}_{1}=\left\{J_{1}, H\right\}=0$. Give a physical interpretation of J_{1}.
(c) Use the Poisson theorem to deduce a third conserved quantity J_{2} :

$$
\begin{equation*}
J_{2}=\frac{1}{2 \omega_{0}}\left(p_{1} p_{2}+\omega_{0}^{2} x_{1} x_{2}\right) \tag{45}
\end{equation*}
$$

Determine the associated infinitesimal canonical transformation generated by this conservation law, and verify that it is a symmetry of the Hamiltonian.
(d) We have found three integrals of motion. Using similar manipulations to part (c), one may show that

$$
\begin{equation*}
\left\{J_{i}, J_{j}\right\}=i \epsilon_{i j k} J_{k} \tag{46}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left(\frac{H}{2 \omega_{0}}\right)^{2}=J_{1}^{2}+J_{2}^{2}+J_{3}^{2} \tag{47}
\end{equation*}
$$

Thus any random orbit is selected by choosing J_{1}, J_{2}, J_{3} to lie on the surface of a sphere. Describe the motion of the orbit in each of the following limiting cases
(i) $J_{1}=J_{2}=0$
(ii) $J_{2}=J_{3}=0$
(iii) $J_{1}=J_{3}=0$
(e) (Optional:) Consider the $2 D$ oscillator in cylindrical coordinates

$$
\begin{equation*}
L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{1}{2} \omega_{0}^{2} r^{2} \tag{48}
\end{equation*}
$$

Consider a particle in this potential is going around in a circle. At $t=0$ it is on the x axis, and is then given a small extra push of impulse Δp in the y direction. Using the integrals of motion explain (without detailed calculation) why the perturbed orbit remains closed.

[^0](a). Under infinitesimal transformation
\[

$$
\begin{align*}
x_{1} & \rightarrow x_{1}+\lambda \frac{\partial J_{3}}{\partial p_{1}} \tag{49}\\
x_{2} & \rightarrow x_{2}+\lambda \frac{\partial J_{3}}{\partial p_{2}} \tag{50}
\end{align*}
$$
\]

which is is rotation

$$
\begin{align*}
& x_{1} \rightarrow x_{1}^{\prime}=x_{1}-\lambda x_{2} \tag{51}\\
& x_{2} \rightarrow x_{2}^{\prime}=x_{2}+\lambda x_{1} \tag{52}
\end{align*}
$$

This a rotation in clockwise fashion of the coordinates $\left(x_{1}, x_{2}\right)$ by an amount $\delta \theta=\lambda$. It also generates a similar rule for $\left(p_{1}, p_{2}\right)$

$$
\begin{align*}
& p_{1} \rightarrow p_{1}^{\prime}=p_{1}-\lambda p_{2} \tag{53}\\
& p_{2} \rightarrow p_{2}^{\prime}=p_{2}+\lambda p_{1} \tag{54}
\end{align*}
$$

J_{3} is constant in time because this transformation rule leaves H unchanged. H is unchanged because it is a rotation which leaves the norm of vectors fixed,

$$
\begin{equation*}
p_{a} p_{a}=p_{a}^{\prime} p_{a}^{\prime}, \quad x_{a} x_{a}=x_{a}^{\prime} x_{a}^{\prime} \tag{55}
\end{equation*}
$$

(b) The generator J_{1} yields the following transformation for x_{1}, p_{1}

$$
\begin{align*}
\omega_{0} x_{1} \rightarrow \omega_{0} x_{1}^{\prime} & =\omega_{0} x_{1}+\lambda \frac{\partial J_{1}}{\partial p_{1}} \tag{56}\\
& =\omega_{0} x_{1}+\frac{\lambda}{2} p_{1} \tag{57}\\
p_{1} \rightarrow p_{1}^{\prime} & =p_{1}-\lambda \frac{\partial J_{1}}{\partial p_{1}} \tag{58}\\
& =p_{1}-\frac{\lambda}{2} \omega_{0} x_{1} \tag{59}
\end{align*}
$$

and an analogous relation for x_{2}, p_{2}

$$
\begin{align*}
\omega_{0} x_{2} \rightarrow \omega_{0} x_{2}^{\prime} & =\omega_{0} x_{2}+\lambda \frac{\partial J_{1}}{\partial p_{2}} \tag{60}\\
& =\omega_{0} x_{2}-\frac{\lambda}{2} p_{2} \tag{61}\\
p_{2} \rightarrow p_{2}^{\prime} & =p_{2}-\lambda \frac{\partial J_{1}}{\partial p_{2}} \tag{62}\\
& =p_{2}+\frac{\lambda}{2} \omega_{0} x_{2} \tag{63}
\end{align*}
$$

This is a rotation in of the "vectors" $\left(\omega_{0} x_{1}, p_{1}\right)$ and $\left(\omega_{0} x_{2}, p_{2}\right)$ by an angle proportional to λ and $-\lambda$ respectively. The Hamiltonian involves the sum of squares of these vectors

$$
\begin{equation*}
H \propto\left(p_{1}^{2}+\left(\omega_{0} x_{1}\right)^{2}\right)+\left(\left(p_{2}\right)^{2}+\left(\omega_{0} x_{2}\right)^{2}\right) \tag{64}
\end{equation*}
$$

Each square is invariant under such rotations leaving H unchanged, and therefore the generator of this transformation J_{1} is conserved. J_{1} is the difference in energy between the x-vibrations and the y-vibrations.
(c) The Poisson theorem says that if J_{1} is conserved and J_{3} then so is $\left\{J_{3}, J_{1}\right\}$. The proof is straightforward using the Jacobi identity:

$$
\begin{equation*}
\left\{J_{1},\left\{J_{3}, H\right\}+\left\{J_{3},\left\{H, J_{1}\right\}\right\}+\left\{H,\left\{J_{1}, J_{3}\right\}\right\}=0\right. \tag{65}
\end{equation*}
$$

Since J_{1} and and J_{3} both commute the the Hamiltonian, i.e. $\left\{J_{1}, H\right\}=0$, we see that $\left\{J_{1}, J_{3}\right\}$ also commutes with the Hamiltonian, i.e. it is conserved locally.

Computing the necessary Poisson bracket

$$
\begin{align*}
\left\{J_{3}, J_{1}\right\} & =\left\{\frac{1}{2}\left(x_{1} p_{2}-p_{1} x_{2}\right), \frac{1}{2 \omega_{0}}\left(\frac{1}{2} p_{1}^{2}+\frac{1}{2} \omega_{0}^{2} x_{1}^{2}-\frac{p_{2}^{2}}{2}-\frac{1}{2} \omega_{0}^{2} x_{2}^{2}\right)\right\} \tag{66}\\
& =\frac{1}{4 \omega_{0}}\left\{x_{1} p_{2}, \frac{1}{2}\left(p_{1}^{2}-\omega_{0}^{2} x_{2}^{2}\right)\right\}-\frac{1}{4 \omega_{0}}\left\{p_{1} x_{2}, \frac{1}{2}\left(\omega_{0}^{2} x_{1}^{2}-p_{2}^{2}\right)\right\} \tag{67}\\
& =\frac{1}{4 \omega_{0}}\left(p_{1} p_{2}+\omega_{0}^{2} x_{1} x_{2}\right)-\frac{1}{4 \omega_{0}}\left(-\omega_{0}^{2} x_{2} x_{1}-p_{1} p_{2}\right) \tag{68}\\
& =\frac{1}{2 \omega_{0}}\left(p_{1} p_{2}+\omega_{0}^{2} x_{1} x_{2}\right) \tag{69}
\end{align*}
$$

The transformation generated by this generator is

$$
\begin{align*}
& x_{1} \rightarrow x_{1}^{\prime}=x_{1}+\frac{\lambda}{2} \frac{p_{2}}{\omega_{0}} \tag{70}\\
& p_{1} \rightarrow p_{1}^{\prime}=p_{1}-\frac{\lambda}{2} \omega_{0} x_{2} \tag{71}\\
& x_{2} \rightarrow x_{2}^{\prime}=x_{2}+\frac{\lambda}{2} \frac{p_{1}}{\omega_{0}} \tag{72}\\
& p_{2} \rightarrow p_{2}^{\prime}=p_{2}-\frac{\lambda}{2} \omega_{0} x_{1} \tag{73}
\end{align*}
$$

This is a rotation of the "vectors" $\left(\omega_{0} x_{1}, p_{2}\right)$ and $\left(\omega_{0} x_{2}, p_{2}\right)$ by $\lambda / 2$. The Hamiltonian is sum of the squares of these vectors

$$
\begin{equation*}
H \propto\left(\omega_{0}^{2} x_{1}^{2}+p_{2}^{2}\right)+\left(\omega_{0}^{2} x_{2}^{2}+p_{1}^{2}\right) \tag{74}
\end{equation*}
$$

and is invariant under these rotations, since the lengths of these "vectors" are unchanged by the rotation. J_{2} is related by a rotation to J_{1}. Indeed of we rotate our coordinate system by $\pi / 4, J_{1}$ becomes J_{2} and J_{2} becomes J_{1}. This is easy to see. For a $\pi / 4$ rotation

$$
\begin{align*}
& x_{1}^{\prime}=\frac{x_{1}+x_{2}}{\sqrt{2}} \tag{75}\\
& x_{2}^{\prime}=\frac{x_{1}-x_{2}}{\sqrt{2}} \tag{76}
\end{align*}
$$

and thus

$$
\begin{equation*}
x_{1}^{\prime} x_{2}^{\prime}=\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right) \tag{77}
\end{equation*}
$$

J_{2} is thus the difference in energy between the vibrations along the two diagonals.
(d) In the first case $J_{1}=J_{2}=0$. The energy in the x, y direction is the same. Looking at J_{1} this means that when the oscillator in the x_{1} direction has maximal potential energy ($p_{1}=0, \omega_{0} x_{1} \max$), the oscillator in the y direction has maximal kinetic energy (p_{2} max, $\omega_{0} x_{2}=0$) and zero potential energy. The two oscillators in the x, y direction thus have equal amplitude and are out of phase by $\pi / 2$. Thus the motion is circular and this is a circular orbit.

In the second case $J_{2}=J_{3}=0$. The oscillator motion has no angular momentum. The "orbital" motion is thus along a line. Since J_{2} is zero. We may set $p_{2}=x_{2}=0$ (case1) or $p_{1}=x_{1}=0$ (case2). Then if $J_{1}>0$ (case 1), J_{1} is simply the energy of the x_{1} motion of oscillations along the x axis. If $J_{1}<0$ then all of the linear motion is along the y axis.

In the final case $J_{1}=J_{3}=0$ the energy of the x and y oscillators are equal. There is no angular momentum J_{3} and thus the motion is linear. Since the energy of the two oscillators (x_{1} direction and x_{2} direction) the the motion is along the diagonal. If $J_{2}>0$ then the motion picks one of the diagonals, and if $J_{2}<0$ it picks the other. Examining the sign, we see that at maximal displacement in the first quadrant, $x_{1}=x_{2}=A$, and $p_{1}=p_{2}=0$, and J_{2} is therefore positive. Thus if $J_{2}>0$ the motion is along the diagonal in the first and third quadrant. If $J_{2}<0$ it is along the diagonal in the second and fourth.

[^0]: ${ }^{1}$ For example in part (a) we qualitatively said that J_{3} generates rotations in the plane. Give a similar qualitative description for J_{1}.

