Problem 1. Phase-space and its characteristic flow

(a) If the number of particles per phase space volume (called the phase-space density)

dN

f(t,q,p) = T (1)

is conserved, then the phase-space density obeys a conservation law

0 o (fq" o (fpi

ot g’ op;
This equation of motion is analogous to a compressible fluid, where the density p(¢, x)
satisfies the continuity equation

Op+V-(pv) =0, (3)

with v (¢, ) the velocity of the fluid. Eq. (2) does not require Hamilton’s EOM, it just
says that once a particle always a particle, regardless of the EOM.

(i) Show that if Hamilton’s EOM are also satisfied and particle number is conserved,
the Liouville equation (also called the free-streaming Boltzmann equation)

o _of of  0f . _
at ot oagl Top i T

is satisfied, and that this equation can be written as

0, (4)

atf+{faH}p,q:07 (5)

(ii) Eq. (4) is analogous to an incompressible fluid, where V-v = 0, and thus we have
from Eq. (3)

Op+v-Vp=0. (6)

What is the phase-space analog of the incompressibility constraint V - v = 07

Egs. (4) and (5) imply that f(t,q,p) that f is constant along the flow lines. Heuristi-
cally, this means that we can find the solution to the equation Eq. (5) by tracing the
trajectories backward in time to the initial time ¢, where the initial condition fy(q, p)
is specified. This is known as the method of characteristics, and we will develop this
method here, see also wikipedia.

(i) Show by direct substitution that for a free particle H = P?/2m the solution to

0f(t,Q, P)

ot +{f>H}P,Q:0 (7)

[(L.Q.P) = fol@— T1.P). ®)

where fo(q,p) is the initial condition at time ¢ = 0. The somewhat confusing
minus sign is just a reflection of the familiar fact that if I want to translate a
function F(z) forward by a distance Az = vt, I want the new function F(x —vt).
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https://en.wikipedia.org/wiki/Method_of_characteristics

(ii) Show more generally that the characteristic solution to Eq. (7) is

f(t7Q7P) = fO(Q<Q7P;t7tO)7 p(Q,P;t,to)), (9)

where fy(q, p) is the initial condition at time ¢ = ¢.
Hint: To prove Eq. (9), first show that ¢, p obey the EOM

Oqg OH oqg OH

0wq(Q, Pst, ty) = — (%a—]g - 8_1(]3@) = —{¢,H}pg (10)
Oop O0H Op OH

op(Q, Pt  tg) = — (%a—]g — 8%%) =—{p,H}po (11)

and then prove Eq. (9).

The meaning of Eq. (9) is as follows (see Fig. 1) — start at time t, with coordinates
(4,P)|ts, = (¢,p), and flow them forward in time to time ¢ were the coordinates are
now (q,p)|s = (@, P). This flow determines the map (q,p) — Q(q,p;t,to) and (g,p) —
P(q,p;t,to). The inverse map is ¢(Q, P;t,ty) and p(Q, P;t,ts) which are specified in
Eq. (9). Thus the characteristic solution can be loosely written

f(t,Q, P) = folg,p). (12)

Alternatively, (¢,p) in Eq. (9) are defined as follows: we start at time ¢’ = t with

coordinates (¢,p) = (@, P) and evolve (¢,p) backwards in time ¢’ with Hamilton’s
equation

d(t) _0H(.p) 5

a'  0p (13)

4i(t) _ OH(i.p) y

a9 (14)

until ¢ = tg. The traced curve for ¢’ < t is a function of @, P, t, t’. This evolution
determines the required map:

Q<Q’ P, L, tO) = q~(t/>|t/:t0 (15)
p(Q, Pt to) = B(t)]y—y, (16)
This “tracing backward” procedure is known the characteristic solution of the first

order partial differential equation. The curves are known as characteristics. The same
method can be used to solve any first order partial differential equation at least locally.

(c) The phase space density at the initial time ¢ = 0 is

1 z? (p— Ry)?
2 AzoApy P 2Ax} 2Ap3

f(0,2,p) = (17)
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Figure 1: Characteristics of the Liouville equation .



(i) Determine the phase space distribution f(t,x, p) at later time ¢ for a group of free
particles, i.e. H(x,p) = p*/2.

(ii) Sketch contour in the phase-space (z,p) where f(¢,z,p) is 1/e of its maximum
(with e ~ 2.718), at time ¢ = 0 and at a significantly later time.

For definiteness take units where m = Azxy = Apy = 1 take Py = 3Apy.
(d) The phase space density at the initial time is

1 (l’ — X0)2 p2
21 AzoApg 2Az2 2Ap3

f(0,2,p) = (18)

(i) Determine the phase space distribution f(¢,z,p) at later time ¢ for a group of
particles in a harmonic oscillator, i.e H(z,p) = (p* + wix?)/2.

(ii) Sketch contour in the phase-space (z,p) where f(¢,x,p) is 1/e of its maximum
(with e ~ 2.718) at time ¢ = 0 and at several subsequent times.

For definiteness take units where m = Axqg = Apg = 1. Take Xy = 3Ax and
mwoy = 3Apg



Solution

(a) We just differentiate through

of f ;Of q 5151
p— . 1
o tiga P, T ap) =Y (19)
The last terms vanish by the Hamilton’s EOM :
a¢t  Op; 0?’H 0’H
. = — — ) = 2
(u on.) = (g~ amow) = 20)

leading to the required result. The incompressibility constraint is the lhs of Eq. (20), and is a
consequence of Hamilton’s EOM. It appeared prominently in our study of Lioville’s theorem.

(b.i) Just differentiate

8tf = - (ano) (%) ) (21)
dqf =(0qfo) - (22)

This leads to the result: ) ]
0.f + Qdof + Popf =0, (23)

after using the EOM of the free theory, Q = P/m and P =0.

(b.ii) Then the solution is supposed to take the form:

f(t,Q,P) = fola(Q, P,t),p(Q, P,1)) . (24)
To verify this we first note that
_(9fo dfo
of= ( g Ohq + Bp atP) (25)
while
9fodq _ 0fo Op
ol =500 " apoq (26)

0fo 9, 9o Ip

Ol =%,0p " opop- (27)
So with no thought we find
8f . 0qO0H 0q0H
b [, owor_ opom
dq 0Q 0P 0P 0Q



Then, thinking now, we recognize that if we advance () and P by §t, we will have the
same initial condition at time ty. This means that

a(Q + Qdt, P + Pét, t + 6t) = q(Q, P, 1), (29)
and similarly for the momentum
p(Q + Qdt, P+ Pdt,t + 6t) = p(Q, P,t). (30)

These constraints lead to

0q OH 0q OH
0,q(Q, P, 1) 00P 0P00 0, (31a)

Op OH  Op OH

This says that p and ¢ evolve backwards in time:

atp(Qa Pv t) = - {Qa H}RQ ) (32)
owp(Q, P,t) = —{p, H}P,Q : (33)

With these relations, Eq. (31), and Eq. (28) the result follows.

(b.iii) As we increment ¢, at fixed @), P we must remain on the same curve (see picture).
This means

aH(q7p7 tO)
= 4
atoq 8p (3 )
aH(q7p7 tO)
Opp = — ——2 0 35
toD dq ( )

This gives a different strategy to find ¢, p: Start with t5 =t where ¢ = @ and p = P, and
evolve (g,p) in to. Since tq is before ¢, this means evolving backward in time, to the time
where you know the initial conditions for f(¢,x, p).

(¢) According to (b.i) we have
f(t, X, P) = fo(X — Pt) (36)

where we have set m = 1. This means

(X — Pt)? (P— P)?
2Az2 2Ap3

XP)=— —
f(t, X, P) o Azaips &P (37)

A contour plot of f(t, X, P) is plotted for several times for Azg = Apy = 1 and Py = 3 in
Fig. 2. We see a characteristic “shearing” of the phase space under free motion.



Figure 2: A Gaussian blob under free evolution. The contours show the constant values for
f(t, X, P) in the (X, P) plane. These contours are shown at ¢ = 0,1.5,3.0. The center of
the blob moves with z = Pyt with Py = 3. The area of each shaded region remains constant
in time.



(d) The Harmonic oscillator works similarly, although the character of the solution is very
different. The solution to the harmonic oscillator is

Q =q cos(wpt) + L sin(wot) , (38)
wo

P p

— = —gsi t)+ — t). 39

o g sin(wot) + o cos(wot) (39)

This is just a rotation of (¢, p/wp) to (Q, P/wp). The inverse relation/rotation is

q =Q cos(wyt) — w£ sin(wot) , (40)
0
w% =+ @ sin(wpt) + w—i cos(wot) . (41)

Then substituting this into the expression for f; we find

1 (X cos(wpt) — w% sin(wot) — X0)*  (—Quyp sin(wot) + P cos(wot))?
——————exp | — -
Az Ay P 2Az2 2Ap}

f(t, X, P) =

(42)

A plot this for m = Azg = Apy = 1 and Xy = 3 and wy = 2 at various times is shown

in the figure below in Fig. 3. If we start at ¢ = 0 with ¢ = 3 and P = 0 (the center of the
gaussian blob),

X =3cos(t/T), (43)
P =3wy cos(t/T), (44)

where 7 = 27 /wy. This trajectory is also shown in the figure. At ¢t = 0 the contour where
f(t, X, P) is 1/e of its maxium is a circle

1 1
~(X —Xo)?+=P*=1 (45)
2 2
At time t = 7/4 this contour is an ellipse with the same area
1 2 | Wo e
— (P —woXo)*+ Q=1 (46)

2wk 2

If one were to rescale the P axis by a factor of wg then one would see circular motion
corresponding to the sho motion in the X, P/wy plane. The trajectory of the center of the
Gaussian blob is

X =3cos(t/T) (47)
P/wy =3 cos(t/T) (48)

The contours are shown in Fig. 4
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Figure 3: A Gaussian blob under the evolution of the SHO. The contours show the constant
values for f(t, X, P) in the (X, P) plane. Going clockwise around the ellipse (the blue line)
we show the contours at t = 0,7/8,27/8, ... where the period of the motion is 7 = 27 /wy
with wy = 2. The center of the Gaussian blob follows and ellipse for a simple harmonic
oscillator (see text). We have set Ax = Ap =m =1 and have Xy = 3 and wy = 2






Problem 2. A slowly changing magnetic field

Consider the circular orbits in the zy plane with x > 0 of a particle mass m and charge ¢ in
a constant and uniform magnetic field B in the z direction. (This magnetic field could be
created by a sheet of current in the yz plane at x = 0 as shown below.)

Cucrent Sheet B
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(a) Use the Hamiltonian formulation to determine the radius and angular frequency of the
circular orbits. Relate the center of the circular orbit to the canonical momenta of the

problem. Use the gauge
A = B(0,z,0).

It is useful to define the cyclotron frequency', wp = q¢B/mc.

Now imagine that starting at ¢ = 0 the strength of the magnetic field is slowly increased
from its initial value of By = B(0).

(b) If the original orbit has radius o and is centered at xy = (x¢,0,0) with zo > 0, de-
termine how the radius and the center of the circular orbits change as B(t) is slowly
increased. Describe your results qualitatively by drawing a sketch, and give a qualita-
tive explanation for the change in radius.

'We have given cyclotron frequency in Gaussian units. In SI units wp = ¢B/m.
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Solution

(a) The Lagrangian is

1
L= Jm(#+37) + % (A + Ayj)., (49)
Or .
L= Em(jc2 +97) + mwp(t)ry. (50)
We construct the Hamiltonian which matches onto the general form discussed in class:
1
H= 5 (P2 + (py — mwpz)?) . (51)

The equation of motion for p, is cyclic in character
py = const, (52)

Thus the effective Hamiltonian for the motion in x is then

2 2
pa: 2 py
Hpg=—"+ - — 53
T om N pB <x mwB) (53)
which is a shifted harmonic oscillator in . The harmonic motion is around
Py
H4
oo (54)

which determines the center of the circle.

The radius of the circle is determined by the energy of the 1D problem We have that the
turning points of the x motion for the equivalent 1d problem determines the radius

1
€= §mw%r(2] : (55)
or
2€
= ) 56
"o mw (56)

(b) Then using the theory of adiabatic invariants we have

I= ]{ pad, (57)
is constant. We have from lecture that the adiabatic invariant for the SHO is

I=—. (58)

(59)



Since I and p, are adiabatically constant and constant respectively we find:

Discussion: Interpreting the result, the radius shrinks keeping the flux fixed:

7r(t)?B(t) = const ,

and the circular orbits move closer to x = 0.
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Problem 3. Short problems

Answer briefly. No more than a few lines

(a) Derive the canonical transformation rules (¢, p) — (@, P) for type F»(q, P,t)

OF,
p _8_q (62)
_OF,
, . OF
H' =H + By (64)

from the action principle. (This is essentially just reproducing what was done in
lecture).

(b) It is well known that replacing the Lagrangian by

df

L 1.t) =L it -
(¢,4,t) (¢,4,t) + o

(4,1) (65)

does not change the equations of motion. Show that this change in the Lagrangian
amounts to a canonical transformation in the corresponding Hamiltonian setup, and
find the generating function of type F, for this transformation.

(c¢) Consider the Hamiltonian for a particle in a electromagnetic field

H= % + ep(t, ) (66)

Under a gauge transformation the electromagnetic potentials A, change, but the
fields E and B do not. The change in the potentials is specified a function A(t,r),
with new potentials

A — A'(t,r) =A+ VA(t,r) (67)
= ¢t ) =p — OA(t,T) (68)

Show that this change in the Hamiltonian can be written as a canonical transformation,
and find the corresponding F, generating function.

(d) (Optional but recommended) Spell out the relation between parts (c¢) and parts (b),
by examining the Lagrangian for a particle in an electromagnetic field

1
L= §m7"2 —ep(t,r) + 27" -A(t,r) (69)

(e) What is the transformation (7, p) — (R, P) generated by Fy(r, P) = ar- P. Describe
this transformation qualitatively.

14



(f) The Hamiltonian of a charged particle of charge ¢ in the electrostatic potential of an
electric dipole with dipole moment dy directed along the z axis is

p? Z-P

=2
o + K = (70)
where k = qdy/(47mep) in SI units.
Use the previous item with a = (1 + €) to show that said particle has
p-r —2FEt = const (71)
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Solution

(a) The action of the two system is (respectively)

Sy z/dt (pg — H(p.q)) (72)
Sy :/dt <PQ —H'(P, Q)) . (73)

Instead of using S5 we will can
Sy = /dt (~eP - H(P.Q) (74)

which differs from S, only by a total derivative, d(PQ)/dt, which does not affect the equation
of motion for the (P, Q) system. There is a map between (g, p) and (Q, P), i.e. Q(q,p) and
P(q,p). With this map we could use S} as an action for (p, ¢) instead of S;. The difference
in the two actions must then be a total derivative if the ¢, p EOM derived from these actions
is to be the same. The difference is

S — S = / dt <pq L QP — (H— H’)dt) (75)

and is required to take the form of a total derivative

; dFQ(Q,P,t) _/ 8F2 . 8F2 . 8F2
51—52_/dt il KA R e (76)

Comaring these two forms gives the transformation rule

0F;
. (77)
OF:
Q=2p (78)
0F;
H —H=—- 7
5P (79)
(b) If we repalce
df (¢, 1)
L' =L ’ 80
+— (80)
of . 0of
L'=L+—q¢+— 81
+ 99" o (81)
Then the canonical momentum changed, and the coordinate is not:
Q =q (82)
oL’ of
pP— — et 83
2 ~ P T 9, (83)
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This is generated by
Iy =qP — f(q,t) (84)

(c) We take the original Hamiltonian H(q,p) and construct the new H'(Q, P). We take as
our generating function:

F=r-P— ZA(fr,t) (85)
Then using the rules:
p=P— ZVA (36)
R =r (87)
Putting together the ingrediants
A
(P R) = H(p.r) — ¢ (53)
Or more explicitly
P— A’ 2
H'(P,R) -\ (;n/f) S yey (89)

where A" and ¢’ are given in Eq. (77?).

(d) Under a gauge transformation

edA(t, )

L—L =1L
— to g (90)
(e) It is a scale transformation
b
P == 91
P (o1)
R =ar (92)

Note the transformation preserves the form: p-dr = P - dR.

(f) For infinitessimal transform G = r - p the transformation Generated by G on observable
O gives the Poisson bracket:

{O,G}. (93)
Here the transformation rule is
r— (1+er=r+er, (94)
— =p—€p, 95
P g PP (95)
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which matches the Poisson Brackets
{r,G} =r,
{p,G}=—-p.
Under the transformation of Eq. (94) we find

1
H— —— H~H—2H,
(1+¢)?

and this implies the Poisson bracket
{H,r -p} =—2H.

Thus since O = {0, H} we have
d(r - p)

_ ioH.
pra

Since H(q,p) = E is constant we have

T - p — 2Et = constant

18
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Problem 4. Symplectic Integrators

Optional: This problem is optional. But (a) and (b) are so nice, and the solutions to (a)
and (b) are online in the course notes. If you have time, I urge you to look at those.

Many physical systems are described by Hamiltonians which give rise to equations of motion
that cannot be solved analytically, but must be discretized and solved numerically. Dis-
cretizations which preserve the symmetries of the continuum theory are especially effective
when numerically integrating the equations of motion for long times. In this problem, we
will explore some of the techniques available to describe such systems.

Consider a one-dimensional classical system whose finite time evolution over time t is de-
scribed by a canonical transformation. Specifically, let

ro=20) , z=x(t) , po=p0) , p=p)

and consider a generating function Fy(xo,p,t). Then the update rule from (z¢,po) to (x,p)
is obtained by solving the canonical transformation equations

_ OF, (g, p, 1) . OF5(xo,p,t)

102
0xo ’ op (102)

Po

We are thinking of ¢ as being small but finite.

(a) (i) Show that this transformation (or update rule) preserves volume in phase space
regardless of the size of ¢ (that is, prove Liouville’s theorem for this case).

(ii) Next show that for
Fy(xo,p,t) = zop + t H(xo,p)

as t — 0, the evolution (or update) equations reduce to Hamilton’s equations of
motion. For H = p?/2m+ U(z), determine z and p in terms of zg, po, and ¢, with
t finite. This is known as a first order symplectic integrator, and preserves the
phase space area, regardless of the step size t.

(b) For a Hamiltonian of the form %—i—U (x), show that the naive discretization of Newton’s
equations of motion (for ¢ small but finite)

oU
@)y oyt Py (103)
0xo m

b =D —

does NOT preserve volume in phase space. For a harmonic oscillator, will the volume
shrink or grow? What does this say about the long time behavior of this approxima-
tion? Estimate the number of iterations of this map before the error is of order one,
in terms of the mass m of the particle, the spring constant k, and the finite interval ¢.
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All this is really optional: Recall that under a time dependent canonical map from
(q1,p1) — (Q, P) generator Fy(qy, P,t) we have

or,
= 4
D1 8q (10 )
OF,
o= (105)
, OFy(qu, Pt
Q. P) =H{gpy) + ALY (106)

This last part studies the implications of the last equation relating H' and H for discretiza-
tion, and its meaning more generally.

We are describing a canonical map from (o, po) — (z,p). The Hamiltonian for (z,p) is
p?/2m + U(x) so that the exact time evolution of the coordinates at time ¢ is the differential
equation we are trying to solve

. p
= 107
i (107)

(108)

These equations determine z, = x(t+4dt) and py = p(t+0t) for some infinitessimal §t. x,,p.
are not the same as taking (zo,po) and applying the map generated by Fy(xq,py,t + 0t).
However, if we evolve xg, pg with a new Hamiltonian H

_ 0Ho (20, po)
o = (109)
. OHoy(wo,po)
o = - koo (110

by infinitessimal dt to xoy = 2(dt) = xo + dx and por = po(dt) = po + dpo, and then apply
the map generated by Fy(zoy,ps,t + 0t) to xoy,por we will exactly obtain (x4, py). This
is the meaning of a time dependent canonical transform, we can view the evolution either
with xg, pg or x, p. Ideally the time evolutions of xg, py will be approximately zero if the map
Fy(xo, P, t) is a good approximation for the onshell action (principal function), S, (¢, ¢, to, P).

(c) (Optional but highly receommended) Compute Hy using by two methods: (i) by using
an appropriate version of Eq. (104), and (ii) by determining what Hy needs to be so
that the map generated by Fy(xoy,ps,t + 0t), maps (zos,pos) to (x4, py)

You should find by both methods that

U (qo) po 2
5yt O) (111)

Hoy(qo,po) =t

Here H, is non-zero to first order in ¢, and is therefore small. For a second order
symplectic integrator one would find Hy = 0+ O(t?). See Ruth, IEEE Transactions on
Nuclear Science (posted online).
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Solution

The solution uses a slightly different notation from the problem statement:

‘ problem statement ‘ solution
(,p) (1)
(0, Po) (2,p)

new coords at time ¢
old coords at time zero

(a) (i) Show that this evolution preserves volume in phase space (that is, prove Liouville’s
theorem for this case).

We need to compute the Jacobian determinant of the transformation:

9z’ 9z’ 9*F. PF, 0p) 9 F Op
I A [/ o' C Opoz Op
ox Op or dp
But differentiating p = % with respect to p gives
1 — 82F2 8]?/

~ Op'dx Op
and hence the Jacobian determinant is 1.
A solution with the volume form:

2 O*F.
dp N\ dx = 2dp' Adz = dp' A 2 dx = dp' A do

Oxop’ op'Ox

is also acceptable.

(ii) Next show that for
Fy=axp +6tH

as 0t =t' —t — 0, the evolution equations reduce to Hamilton’s equations of motion.

Equation (1) becomes:

OH 0OH oOH 0OH
=p +5t— "=z + 6t = p—p=-—0t—o —x =4t
P=p+ or T op' p=p or U " op'
which, in the limit 6t — 0, p’ — p, ' — x reduces to
. 0OH . O0H
= - r = —
b ox ' Op

(b) (5 points) For a Hamiltonian of the form % + U(z), show that the naive discretization
of Newton’s equations of motion (for §¢ small but finite)
oU (x)
[ i

ot , d=x+ P 5 (2)
m
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does NOT preserve volume in phase space.

The Jacobian determinant is

o o ot

det(Jac) _ ox dp _ 1 m -1 1 ((5t>2 82U
o o _5toU m  O0xdz
ox Op oxdx

For a harmonic oscillator, U = 1ka? with k > 0, and hence the Jacobian is 1 4+ £(6¢)? > 1,

which means the volume grows. The approximation is unstable and after approximately

N =~ (% (51&)2) B

iterations will deviate from the exact solution by order one.

(c) What is the analogous discretization using canonical transformations? Find the right
Fy(x,p'), and work out the equations corresponding to the discretization in part (b).

The right Fy(z,p’) follows from part ii) of a):

Fx@ﬁ):m¥+&(%%:+U@0.

The evolution equations are (1) from above; here they become:

ou !

p=p +0t5 , o =r+ot

ox m

which we rewrite as: o ,
P=p-Sto , o' =a+oth

ox m

Notice in the second equation, p’ appears on the right hand side, rather than p as in part (b).
We proved that all canonical transformations preserve volume in phase space. We do not
expect the errors from the discretization procedure to grow with time (of course, numerical
errors can accumulate, though these are typically much smaller than discretization errors).
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