
Problem 1. Phase-space and its characteristic flow

(a) If the number of particles per phase space volume (called the phase-space density)

f(t, q, p) =
dN

dnqdnp
(1)

is conserved, then the phase-space density obeys a conservation law

∂f

∂t
+
∂ (f q̇i)

∂qi
+
∂ (fṗi)

∂pi
= 0 . (2)

This equation of motion is analogous to a compressible fluid, where the density ρ(t,x)
satisfies the continuity equation

∂tρ+∇ · (ρv) = 0 , (3)

with v(t,x) the velocity of the fluid. Eq. (2) does not require Hamilton’s EOM, it just
says that once a particle always a particle, regardless of the EOM.

(i) Show that if Hamilton’s EOM are also satisfied and particle number is conserved,
the Liouville equation (also called the free-streaming Boltzmann equation)

df

dt
=
∂f

∂t
+
∂f

∂qi
q̇i +

∂f

∂pi
ṗi = 0 , (4)

is satisfied, and that this equation can be written as

∂tf + {f,H}p,q = 0 , (5)

(ii) Eq. (4) is analogous to an incompressible fluid, where ∇·v = 0, and thus we have
from Eq. (3)

∂tρ+ v · ∇ρ = 0 . (6)

What is the phase-space analog of the incompressibility constraint ∇ · v = 0?

(b) Eqs. (4) and (5) imply that f(t, q, p) that f is constant along the flow lines. Heuristi-
cally, this means that we can find the solution to the equation Eq. (5) by tracing the
trajectories backward in time to the initial time t0 where the initial condition f0(q, p)
is specified. This is known as the method of characteristics, and we will develop this
method here, see also wikipedia.

(i) Show by direct substitution that for a free particle H = P 2/2m the solution to

∂f(t, Q, P )

∂t
+ {f,H}P,Q = 0 (7)

is

f(t, Q, P ) = f0(Q− P

m
t, P ) . (8)

where f0(q, p) is the initial condition at time t = 0. The somewhat confusing
minus sign is just a reflection of the familiar fact that if I want to translate a
function F (x) forward by a distance ∆x = vt, I want the new function F (x− vt).
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(ii) Show more generally that the characteristic solution to Eq. (7) is

f(t, Q, P ) = f0(q(Q,P ; t, t0), p(Q,P ; t, t0)) , (9)

where f0(q, p) is the initial condition at time t = t0.

Hint: To prove Eq. (9), first show that q, p obey the EOM

∂tq(Q,P ; t, t0) =−
(
∂q

∂Q

∂H

∂P
− ∂q

∂P

∂H

∂Q

)
≡ −{q,H}P,Q (10)

∂tp(Q,P ; t, t0) =−
(
∂p

∂Q

∂H

∂P
− ∂p

∂P

∂H

∂Q

)
≡ −{p,H}P,Q (11)

and then prove Eq. (9).

The meaning of Eq. (9) is as follows (see Fig. 1) – start at time t0 with coordinates
(q̃, p̃)|t0 = (q, p), and flow them forward in time to time t were the coordinates are
now (q̃, p̃)|t = (Q,P ). This flow determines the map (q, p)→ Q(q, p; t, t0) and (q, p)→
P (q, p; t, t0). The inverse map is q(Q,P ; t, t0) and p(Q,P ; t, t0) which are specified in
Eq. (9). Thus the characteristic solution can be loosely written

f(t, Q, P ) = f0(q, p) . (12)

Alternatively, (q, p) in Eq. (9) are defined as follows: we start at time t′ = t with
coordinates (q̃, p̃) = (Q,P ) and evolve (q̃, p̃) backwards in time t′ with Hamilton’s
equation

dq̃(t′)

dt′
=
∂H(q̃, p̃)

∂p̃
, (13)

dp̃(t′)

dt′
=− ∂H(q̃, p̃)

∂q̃
, (14)

until t′ = t0. The traced curve for t′ < t is a function of Q, P , t, t′. This evolution
determines the required map:

q(Q,P, t, t0) = q̃(t′)|t′=t0 (15)

p(Q,P, t, t0) = p̃(t′)|t′=t0 (16)

This “tracing backward” procedure is known the characteristic solution of the first
order partial differential equation. The curves are known as characteristics. The same
method can be used to solve any first order partial differential equation at least locally.

(c) The phase space density at the initial time t = 0 is

f(0, x, p) =
1

2π∆x0∆p0

exp

[
− x2

2∆x2
0

− (p− P0)2

2∆p2
0

]
(17)
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Figure 1: Characteristics of the Liouville equation .
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(i) Determine the phase space distribution f(t, x, p) at later time t for a group of free
particles, i.e. H(x, p) = p2/2.

(ii) Sketch contour in the phase-space (x, p) where f(t, x, p) is 1/e of its maximum
(with e ' 2.718), at time t = 0 and at a significantly later time.

For definiteness take units where m = ∆x0 = ∆p0 = 1 take P0 = 3∆p0.

(d) The phase space density at the initial time is

f(0, x, p) =
1

2π∆x0∆p0

exp

[
−(x−X0)2

2∆x2
0

− p2

2∆p2
0

]
(18)

(i) Determine the phase space distribution f(t, x, p) at later time t for a group of
particles in a harmonic oscillator, i.e H(x, p) = (p2 + ω2

0x
2)/2.

(ii) Sketch contour in the phase-space (x, p) where f(t, x, p) is 1/e of its maximum
(with e ' 2.718) at time t = 0 and at several subsequent times.

For definiteness take units where m = ∆x0 = ∆p0 = 1. Take X0 = 3∆x0 and
mω0 = 3∆p0
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Solution

(a) We just differentiate through

∂f

∂t
+ q̇i

∂f

∂qi
+ ṗi

∂f

∂pi
+ f

(
∂q̇i

∂qi
+
∂ṗi
∂pi

)
= 0 . (19)

The last terms vanish by the Hamilton’s EOM :(
∂q̇i

∂qi
+
∂ṗi
∂pi

)
=

(
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
= 0, (20)

leading to the required result. The incompressibility constraint is the lhs of Eq. (20), and is a
consequence of Hamilton’s EOM. It appeared prominently in our study of Lioville’s theorem.

(b.i) Just differentiate

∂tf =− (∂Qf0)

(
P

m

)
, (21)

∂Qf =(∂Qf0) . (22)

This leads to the result:
∂tf + Q̇∂Qf + Ṗ ∂Pf = 0 , (23)

after using the EOM of the free theory, Q̇ = P/m and Ṗ = 0.

(b.ii) Then the solution is supposed to take the form:

f(t, Q, P ) = f0(q(Q,P, t), p(Q,P, t)) . (24)

To verify this we first note that

∂tf =

(
∂f0

∂q
∂tq +

∂f0

∂p
∂tp

)
, (25)

while

∂Qf =
∂f0

∂q

∂q

∂Q
+
∂f0

∂p

∂p

∂Q
, (26)

∂Pf =
∂f0

∂q

∂q

∂P
+
∂f0

∂p

∂p

∂P
. (27)

So with no thought we find

∂tf + ∂Qf∂PH − ∂Pf∂QH =
∂f0

∂q

(
q̇ +

∂q

∂Q

∂H

∂P
− ∂q

∂P

∂H

∂Q

)
(28)

+
∂f0

∂q

(
ṗ+

∂p

∂Q

∂H

∂P
− ∂p

∂P

∂H

∂Q

)
.
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Then, thinking now, we recognize that if we advance Q and P by δt, we will have the
same initial condition at time t0. This means that

q(Q+ Q̇δt, P + Ṗ δt, t+ δt) = q(Q,P, t) , (29)

and similarly for the momentum

p(Q+ Q̇δt, P + Ṗ δt, t+ δt) = p(Q,P, t) . (30)

These constraints lead to

∂tq(Q,P, t) +
∂q

∂Q

∂H

∂P
− ∂q

∂P

∂H

∂Q
= 0 , (31a)

∂tp(Q,P, t) +
∂p

∂Q

∂H

∂P
− ∂p

∂P

∂H

∂Q
= 0 . (31b)

This says that p and q evolve backwards in time:

∂tp(q, P, t) =− {q,H}P,Q , (32)

∂tp(Q,P, t) =− {p,H}P,Q . (33)

With these relations, Eq. (31), and Eq. (28) the result follows.

(b.iii) As we increment t0 at fixed Q,P we must remain on the same curve (see picture).
This means

∂t0q =
∂H(q, p, t0)

∂p
(34)

∂t0p =− ∂H(q, p, t0)

∂q
(35)

This gives a different strategy to find q, p: Start with t0 = t where q = Q and p = P , and
evolve (q, p) in t0. Since t0 is before t, this means evolving backward in time, to the time
where you know the initial conditions for f(t, x, p).

(c) According to (b.i) we have

f(t,X, P ) = f0(X − Pt) (36)

where we have set m = 1. This means

f(t,X, P ) =
1

2π∆x0∆p0

exp

[
−(X − Pt)2

2∆x2
0

− (P − P0)2

2∆p2
0

]
(37)

A contour plot of f(t,X, P ) is plotted for several times for ∆x0 = ∆p0 = 1 and P0 = 3 in
Fig. 2. We see a characteristic “shearing” of the phase space under free motion.
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Figure 2: A Gaussian blob under free evolution. The contours show the constant values for
f(t,X, P ) in the (X,P ) plane. These contours are shown at t = 0, 1.5, 3.0. The center of
the blob moves with x = P0t with P0 = 3. The area of each shaded region remains constant
in time.
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(d) The Harmonic oscillator works similarly, although the character of the solution is very
different. The solution to the harmonic oscillator is

Q =q cos(ω0t) +
p

ω0

sin(ω0t) , (38)

P

ω0

=− q sin(ω0t) +
p

ω0

cos(ω0t) . (39)

This is just a rotation of (q, p/ω0) to (Q,P/ω0). The inverse relation/rotation is

q =Q cos(ω0t)−
P

ω0

sin(ω0t) , (40)

p

ω0

= +Q sin(ω0t) +
P

ω0

cos(ω0t) . (41)

Then substituting this into the expression for f0 we find

f(t,X, P ) =
1

2π∆x0∆p0

exp

[
−

(X cos(ω0t)− P
ω0

sin(ω0t)−X0)2

2∆x2
0

− (−Qω0 sin(ω0t) + P cos(ω0t))
2

2∆p2
0

]
.

(42)
A plot this for m = ∆x0 = ∆p0 = 1 and X0 = 3 and ω0 = 2 at various times is shown

in the figure below in Fig. 3. If we start at t = 0 with q = 3 and P = 0 (the center of the
gaussian blob),

X =3 cos(t/τ) , (43)

P =3ω0 cos(t/τ) , (44)

where τ = 2π/ω0. This trajectory is also shown in the figure. At t = 0 the contour where
f(t,X, P ) is 1/e of its maxium is a circle

1

2
(X −X0)2 +

1

2
P 2 = 1 (45)

At time t = τ/4 this contour is an ellipse with the same area

1

2ω2
0

(P − ω0X0)2 +
ω2

0

2
Q2 = 1 (46)

If one were to rescale the P axis by a factor of ω0 then one would see circular motion
corresponding to the sho motion in the X,P/ω0 plane. The trajectory of the center of the
Gaussian blob is

X =3 cos(t/τ) (47)

P/ω0 =3 cos(t/τ) (48)

The contours are shown in Fig. 4
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Figure 3: A Gaussian blob under the evolution of the SHO. The contours show the constant
values for f(t,X, P ) in the (X,P ) plane. Going clockwise around the ellipse (the blue line)
we show the contours at t = 0, τ/8, 2τ/8, . . . where the period of the motion is τ ≡ 2π/ω0

with ω0 = 2. The center of the Gaussian blob follows and ellipse for a simple harmonic
oscillator (see text). We have set ∆x = ∆p = m = 1 and have X0 = 3 and ω0 = 2
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Figure 4: The same as Fig. 3 but we have rescaled the momentum axis by ω0.
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Problem 2. A slowly changing magnetic field

Consider the circular orbits in the xy plane with x > 0 of a particle mass m and charge q in
a constant and uniform magnetic field B in the z direction. (This magnetic field could be
created by a sheet of current in the yz plane at x = 0 as shown below.)

Current sheet
B

• O O O O y

① O O o O

•
°

o o o o O ⑧
L z

X

O O O ⑨ ②

O O o O @

-
X
O

(a) Use the Hamiltonian formulation to determine the radius and angular frequency of the
circular orbits. Relate the center of the circular orbit to the canonical momenta of the
problem. Use the gauge

A = B(0, x, 0) .

It is useful to define the cyclotron frequency1, ωB = qB/mc.

Now imagine that starting at t = 0 the strength of the magnetic field is slowly increased
from its initial value of B0 ≡ B(0).

(b) If the original orbit has radius r0 and is centered at x0 = (x0, 0, 0) with x0 > 0, de-
termine how the radius and the center of the circular orbits change as B(t) is slowly
increased. Describe your results qualitatively by drawing a sketch, and give a qualita-
tive explanation for the change in radius.

1We have given cyclotron frequency in Gaussian units. In SI units ωB = qB/m.
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Solution

(a) The Lagrangian is

L =
1

2
m(ẋ2 + ẏ2) +

q

c
(Axẋ+ Ayẏ) , (49)

Or

L =
1

2
m(ẋ2 + ẏ2) +mωB(t)xẏ . (50)

We construct the Hamiltonian which matches onto the general form discussed in class:

H =
1

2m

(
p2
x + (py −mωBx)2

)
. (51)

The equation of motion for py is cyclic in character

py = const, (52)

Thus the effective Hamiltonian for the motion in x is then

Heff =
p2
x

2m
+

1

2
mω2

B

(
x− py

mωB

)2

, (53)

which is a shifted harmonic oscillator in x. The harmonic motion is around

py
mωB

. (54)

which determines the center of the circle.

The radius of the circle is determined by the energy of the 1D problem We have that the
turning points of the x motion for the equivalent 1d problem determines the radius

ε =
1

2
mω2

Br
2
0 , (55)

or

r0 =

√
2ε

mω2
B

. (56)

(b) Then using the theory of adiabatic invariants we have

I =

∮
pxdx , (57)

is constant. We have from lecture that the adiabatic invariant for the SHO is

I =
ε

ωB
. (58)

So we can express the radius and center as

r(t) =

√
2I

mωB
, x0 =

py
mωB

, (59)
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Since I and py are adiabatically constant and constant respectively we find:

r(t) = r(0)

√
B(0)

B(t)
, x0(t) = x0(0)

B(0)

B(t)
. (60)

Discussion: Interpreting the result, the radius shrinks keeping the flux fixed:

πr(t)2B(t) = const , (61)

and the circular orbits move closer to x = 0.
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Problem 3. Short problems

Answer briefly. No more than a few lines

(a) Derive the canonical transformation rules (q, p)→ (Q,P ) for type F2(q, P, t)

p =
∂F2

∂q
(62)

Q =
∂F2

∂P
(63)

H ′ =H +
∂F2

∂t
(64)

from the action principle. (This is essentially just reproducing what was done in
lecture).

(b) It is well known that replacing the Lagrangian by

L′(q, q̇, t) = L(q, q̇, t) +
df

dt
(q, t) (65)

does not change the equations of motion. Show that this change in the Lagrangian
amounts to a canonical transformation in the corresponding Hamiltonian setup, and
find the generating function of type F2 for this transformation.

(c) Consider the Hamiltonian for a particle in a electromagnetic field

H =
(p− eA)2

2m
+ eϕ(t, r) (66)

Under a gauge transformation the electromagnetic potentials A, ϕ change, but the
fields E and B do not. The change in the potentials is specified a function Λ(t, r),
with new potentials

A→ A′(t, r) =A +∇Λ(t, r) (67)

ϕ→ ϕ′(t, r) =ϕ− ∂tΛ(t, r) (68)

Show that this change in the Hamiltonian can be written as a canonical transformation,
and find the corresponding F2 generating function.

(d) (Optional but recommended) Spell out the relation between parts (c) and parts (b),
by examining the Lagrangian for a particle in an electromagnetic field

L =
1

2
mṙ2 − eϕ(t, r) +

e

c
ṙ ·A(t, r) (69)

(e) What is the transformation (r,p)→ (R,P ) generated by F2(r,P ) = ar ·P . Describe
this transformation qualitatively.
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(f) The Hamiltonian of a charged particle of charge q in the electrostatic potential of an
electric dipole with dipole moment d0 directed along the z axis is

H =
p2

2m
+ κ

ẑ · r̂
r2

(70)

where κ = qd0/(4πε0) in SI units.

Use the previous item with a = (1 + ε) to show that said particle has

p · r − 2Et = const (71)
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Solution

(a) The action of the two system is (respectively)

S1 =

∫
dt (pq̇ −H(p, q)) , (72)

S2 =

∫
dt
(
PQ̇−H ′(P,Q)

)
. (73)

Instead of using S2 we will can

S ′2 =

∫
dt
(
−QṖ −H(P,Q)

)
(74)

which differs from S2 only by a total derivative, d(PQ)/dt, which does not affect the equation
of motion for the (P,Q) system. There is a map between (q, p) and (Q,P ), i.e. Q(q, p) and
P (q, p). With this map we could use S ′2 as an action for (p, q) instead of S1. The difference
in the two actions must then be a total derivative if the q, p EOM derived from these actions
is to be the same. The difference is

S1 − S ′2 =

∫
dt
(
pq̇ +QṖ − (H −H ′)dt

)
(75)

and is required to take the form of a total derivative

S1 − S ′2 =

∫
dt
dF2(q, P, t)

dt
=

∫
dt

(
∂F2

∂q
q̇ +

∂F2

∂P
Ṗ +

∂F2

∂t

)
(76)

Comaring these two forms gives the transformation rule

p =
∂F2

∂q
(77)

Q =
∂F2

∂P
(78)

H ′ −H =
∂F2

∂P
(79)

(b) If we repalce

L′ =L+
df(q, t)

dt
(80)

L′ =L+
∂f

∂q
q̇ +

∂f

∂t
(81)

Then the canonical momentum changed, and the coordinate is not:

Q =q (82)

P =
∂L′

∂q̇
= p+

∂f

∂q
(83)
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This is generated by
F2 = qP − f(q, t) (84)

(c) We take the original Hamiltonian H(q, p) and construct the new H ′(Q,P ). We take as
our generating function:

F2 = r · P − e

c
Λ(r, t) (85)

Then using the rules:

p =P − e

c
∇Λ (86)

R =r (87)

Putting together the ingrediants

H ′(P ,R) = H(p, r)− e∂Λ

∂t
(88)

Or more explicitly

H ′(P ,R) =
(P − (e/c)A′)2

2m
+ eϕ′ (89)

where A′ and ϕ′ are given in Eq. (??).

(d) Under a gauge transformation

L→ L′ = L+
e

c

dΛ(t, r)

dt
(90)

(e) It is a scale transformation

P =
p

a
(91)

R =ar (92)

Note the transformation preserves the form: p · dr = P · dR.

(f) For infinitessimal transform G = r · p the transformation Generated by G on observable
O gives the Poisson bracket:

ε{O,G} . (93)

Here the transformation rule is

r → (1 + ε)r = r + εr , (94)

p→ p

(1 + ε)
= p− εp , (95)
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which matches the Poisson Brackets

{r, G} =r , (96)

{p, G} =− p . (97)

Under the transformation of Eq. (94) we find

H → 1

(1 + ε)2
H ' H − 2εH , (98)

and this implies the Poisson bracket

{H, r · p} = −2H . (99)

Thus since Ȯ = {O,H} we have
d(r · p)

dt
= +2H . (100)

Since H(q, p) = E is constant we have

r · p− 2Et = constant (101)
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Problem 4. Symplectic Integrators

Optional: This problem is optional. But (a) and (b) are so nice, and the solutions to (a)
and (b) are online in the course notes. If you have time, I urge you to look at those.

Many physical systems are described by Hamiltonians which give rise to equations of motion
that cannot be solved analytically, but must be discretized and solved numerically. Dis-
cretizations which preserve the symmetries of the continuum theory are especially effective
when numerically integrating the equations of motion for long times. In this problem, we
will explore some of the techniques available to describe such systems.

Consider a one-dimensional classical system whose finite time evolution over time t is de-
scribed by a canonical transformation. Specifically, let

x0 ≡ x(0) , x ≡ x(t) , p0 ≡ p(0) , p ≡ p(t)

and consider a generating function F2(x0, p, t). Then the update rule from (x0, p0) to (x, p)
is obtained by solving the canonical transformation equations

p0 =
∂F2(x0, p, t)

∂x0

, x =
∂F2(x0, p, t)

∂p
(102)

We are thinking of t as being small but finite.

(a) (i) Show that this transformation (or update rule) preserves volume in phase space
regardless of the size of t (that is, prove Liouville’s theorem for this case).

(ii) Next show that for
F2(x0, p, t) = x0p+ tH(x0, p)

as t → 0, the evolution (or update) equations reduce to Hamilton’s equations of
motion. For H = p2/2m+U(x), determine x and p in terms of x0, p0, and t, with
t finite. This is known as a first order symplectic integrator, and preserves the
phase space area, regardless of the step size t.

(b) For a Hamiltonian of the form p2

2m
+U(x), show that the naive discretization of Newton’s

equations of motion (for t small but finite)

p = p0 −
∂U(x0)

∂x0

t , x = x0 +
p0

m
t (103)

does NOT preserve volume in phase space. For a harmonic oscillator, will the volume
shrink or grow? What does this say about the long time behavior of this approxima-
tion? Estimate the number of iterations of this map before the error is of order one,
in terms of the mass m of the particle, the spring constant k, and the finite interval t.
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All this is really optional: Recall that under a time dependent canonical map from
(q1, p1)→ (Q,P ) generator F2(q1, P, t) we have

p1 =
∂F2

∂q
(104)

Q =
∂F2

∂P
(105)

H ′(Q,P ) =H(q1, p1) +
∂F2(q1, P, t)

∂t
. (106)

This last part studies the implications of the last equation relating H ′ and H for discretiza-
tion, and its meaning more generally.

We are describing a canonical map from (x0, p0)→ (x, p). The Hamiltonian for (x, p) is
p2/2m+U(x) so that the exact time evolution of the coordinates at time t is the differential
equation we are trying to solve

ẋ =
p

m
(107)

ṗ =− ∂U(x)

∂x
(108)

These equations determine x+ = x(t+δt) and p+ = p(t+δt) for some infinitessimal δt. x+, p+

are not the same as taking (x0, p0) and applying the map generated by F2(x0, p+, t + δt).
However, if we evolve x0, p0 with a new Hamiltonian H0

ẋ0 =
∂H0(x0, p0)

∂p0

(109)

ṗ0 =− ∂H0(x0, p0)

∂x0

(110)

by infinitessimal δt to x0+ = x0(δt) = x0 + δx0 and p0+ = p0(δt) = p0 + δp0, and then apply
the map generated by F2(x0+, p+, t + δt) to x0+, p0+ we will exactly obtain (x+, p+). This
is the meaning of a time dependent canonical transform, we can view the evolution either
with x0, p0 or x, p. Ideally the time evolutions of x0, p0 will be approximately zero if the map
F2(x0, P, t) is a good approximation for the onshell action (principal function), S2(t, q, t0, P ).

(c) (Optional but highly receommended) Compute H0 using by two methods: (i) by using
an appropriate version of Eq. (104), and (ii) by determining what H0 needs to be so
that the map generated by F2(x0+, p+, t+ δt), maps (x0+, p0+) to (x+, p+)

You should find by both methods that

H0(q0, p0) ≈ t
∂U(q0)

∂q

p0

m
+O(t2) (111)

Here H0 is non-zero to first order in t, and is therefore small. For a second order
symplectic integrator one would find H0 = 0 +O(t2). See Ruth, IEEE Transactions on
Nuclear Science (posted online).
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Solution

The solution uses a slightly different notation from the problem statement:

problem statement solution
new coords at time t (x, p) (x′, p′)

old coords at time zero (x0, p0) (x, p)

(a) (i) Show that this evolution preserves volume in phase space (that is, prove Liouville’s
theorem for this case).

We need to compute the Jacobian determinant of the transformation:

det(Jac) =

∣∣∣∣∣
∂x′

∂x
∂x′

∂p

∂p′

∂x
∂p′

∂p

∣∣∣∣∣ =

∣∣∣∣∣
∂2F2

∂p′∂x
+ ∂2F2

∂p′∂p′
∂p′

∂x
∂2F2

∂p′∂p′
∂p′

∂p

∂p′

∂x
∂p′

∂p

∣∣∣∣∣ =
∂2F2

∂p′∂x

∂p′

∂p
.

But differentiating p = ∂F2

∂x
with respect to p gives

1 =
∂2F2

∂p′∂x

∂p′

∂p
,

and hence the Jacobian determinant is 1.

A solution with the volume form:

dp ∧ dx =
∂2F2

∂x∂p′
dp′ ∧ dx = dp′ ∧ ∂2F2

∂p′∂x
dx = dp′ ∧ dx′

is also acceptable.

(ii) Next show that for
F2 = xp′ + δtH

as δt ≡ t′ − t→ 0, the evolution equations reduce to Hamilton’s equations of motion.

Equation (1) becomes:

p = p′ + δt
∂H

∂x
, x′ = x+ δt

∂H

∂p′
⇒ p′ − p = −δt∂H

∂x
, x′ − x = δt

∂H

∂p′

which, in the limit δt→ 0, p′ → p, x′ → x reduces to

ṗ = −∂H
∂x

, ẋ =
∂H

∂p

(b) (5 points) For a Hamiltonian of the form p2

2m
+ U(x), show that the naive discretization

of Newton’s equations of motion (for δt small but finite)

p′ = p− ∂U(x)

∂x
δt , x′ = x+

p

m
δt (2)
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does NOT preserve volume in phase space.

The Jacobian determinant is

det(Jac) =

∣∣∣∣∣
∂x′

∂x
∂x′

∂p

∂p′

∂x
∂p′

∂p

∣∣∣∣∣ =

∣∣∣∣∣ 1 δt
m

−δt ∂2U
∂x∂x

1

∣∣∣∣∣ = 1 +
(δt)2

m

∂2U

∂x∂x

For a harmonic oscillator, U = 1
2
kx2 with k > 0, and hence the Jacobian is 1 + k

m
(δt)2 > 1,

which means the volume grows. The approximation is unstable and after approximately

N ≈
(
k

m
(δt)2

)−1

iterations will deviate from the exact solution by order one.

(c) What is the analogous discretization using canonical transformations? Find the right
F2(x, p′), and work out the equations corresponding to the discretization in part (b).

The right F2(x, p′) follows from part ii) of a):

F2(x, p′) = xp′ + δt

(
(p′)2

2m
+ U(x)

)
.

The evolution equations are (1) from above; here they become:

p = p′ + δt
∂U

∂x
, x′ = x+ δt

p′

m
,

which we rewrite as:

p′ = p− δt∂U
∂x

, x′ = x+ δt
p′

m
.

Notice in the second equation, p′ appears on the right hand side, rather than p as in part (b).
We proved that all canonical transformations preserve volume in phase space. We do not
expect the errors from the discretization procedure to grow with time (of course, numerical
errors can accumulate, though these are typically much smaller than discretization errors).
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