
Problem 1. Equations of motion

(a) From the Euler-Lagrange equations, determine the partial differential equation of mo-
tion resulting from the following action:

S =

∫
dt dx

1

2
µ(∂tq)

2 − T

2
(∂xq)

2 − V (q)

where V (q) = λq4. Also determine the canonical stress tensor for this action.

(b) By varying the action, determine the partial differential equation of motion resulting
from the following action:

S =

∫
dt dx

1

2
µ(∂tq)

2 − T

2
(∂xq)

2 − αq∂4xq

(c) By varying the action, determine the partial differential equation of motion resulting
from the following action:

S =

∫
dt dx

1

2
µ(∂tq)

2 − T

2
(∂xq)

2 − α(∂2xq)
2

Compare to part (b) and comment on similarities and differences.
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Solution:

(a) The equation of motion from the Euler lagrange equation is

− ∂µ
(

∂L
∂(∂µq)

)
+
∂L
∂q

= 0 (1)

where we use the index notation from class class ∂νq = (∂tq, ∂xq). The Euler-Lagrange
equations read

− ∂t(µ∂tq) + ∂x(T∂xq)− V ′(q) = 0 (2)

To write down the canonical stress tensor we use

T µν = − ∂L
∂(∂µq)

∂νq + Lδµν (3)

The energy density

ε = −T 0
0 =

1

2
µ(∂tq)

2 +
T

2
(∂xq)

2 + V (q) (4)

The energy flux is
Sx0 = −T x0 = −T (∂xq)(∂tq) (5)

The momentum is
gx = T 0

x = −µ(∂tq)(∂xq) (6)

The momentum flux is

T xx = −T
2

(∂xq)
2 − µ

2
(∂tq)

2 + V (q) (7)

(b) To find the equation of motion in these cases we vary the action sending

q → q + δq (8)

Then substituting q + δq into the action and expanding to first order we have:

S[q + δq] = S[q] +

∫
dtdx

[
µ(∂tq)(∂tδq)− T (∂xq)(∂xδq)− αδq∂4xq − αq∂4xδq

]
. (9)

Now we integrate by parts as many times as necessary so that δq is by itself

T∂xq ∂xδq → [−∂x(T∂xq)] δq , (10)

αq ∂4xδq →
[
α∂4xq

]
δq , (11)

yielding

S[q + δq] = S[q] +

∫
dtdx δq(t, x)

[
−∂t(µ∂tq) + ∂x(T∂xq)− 2α∂4xq

]
. (12)

Thus the equation of motion is[
−∂t(µ∂tq) + ∂x(T∂xq)− 2α∂4xq

]
= 0 (13)
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(c) We notice that the after integrating by parts twice in the action

α(∂2xq)(∂
2
xq)→ αq∂4xq , (14)

The action is then identical with the previous item (b). It therefore gives the same EOM.
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Problem 2. Group velocity

(a) (Optional – Warm up) This is lecture material, you can just copy the derivation, or skip
it. Find the eigen-frequencies and normal modes of N particles which are connected by
springs and which can move along a circle, i.e periodic boundary conditions qN/2(t) =
q−N/2(t). All particles have mass m and are separated by a distance a; the spring
constants of all of the springs are the same and equal γ.

Express a general real solution q`(t) with ` = 1 . . . N as a linear superposition of the
eigen-modes.

(b) Explain why the work done per time by the j − 1th mass on the j-th mass is

dW

dt
= −γq̇jqj + γq̇jqj−1

(c) Show that if the motion is that of a wave traveling along the circle qj = Aeikx−iω(k)t,
the time averaged energy flux (i.e. the time average of the work in (b)) equals the
product of the (time averaged) energy per site and the group velocity of the system.

Here are some intermediate steps:

(i) (Optional, but recommended.) For computing the averages, prove the following
result: if A(t) = Re[Aωe

−iωt] and B(t) = Re[Bωe
−iωt] then

A(t)B(t) =
1

4
(AωB

∗
ω + A∗ωBω) =

1

2
Re[AωB

∗
ω] (15)

Prove this result for yourself, by writing A(t) as 1
2
(Aωe

−iωt + A∗ωe
+iωt).

We will use this below where Aω = Aeikx or something similar.

(ii) Show that the time averaged kinetic energy per site and the time averaged po-
tential energy per site are

T =
1

4
mω2(k)|A|2 =

1

4
γ|A|2(2 sin(ka/2))2 (16)

U =
1

4
γ|A|2(2 sin(ka/2))2 (17)

(iii) Complete task (c) described above.
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Solution:

(a) The equation of motion is the same as derived in class

mq̈j + κ(qj+1 − qj)︸ ︷︷ ︸
force F+

+ −κ(qj − qj−1)︸ ︷︷ ︸
force F−

= 0 . (18)

The two terms have a simple interpretation. The first term is the force by the j + 1 particle
on the j-th particle. The second term is the force by the j − 1 particle on the j-th. The
equilibrium position of the particles (as measured along the circumference) is xj = ja with
j = 0 . . . N − 1. The spacing a between the particles is a = 2πR/N .

Then we substitute into the EOM qj(t) = eikja−iωt to find the dispersion curve ω(k) as
was done in class

ω(k) = ω0 sin(ka/2) , (19)

where ω0 = 2
√
κ/m. Since the particles are on a circle the N -th particle is identified with

the 0-th yielding a boundary condition which ultimately quantizes k

qN(t) = q0(t) , (20)

This boundary condition leads to the requirement that

eikNa = ei0 (21)

Thus k N a should be a multiple of 2π

km =
m

N

2π

a
m = integer (22)

However, as discussed in class, not all m lead to a distinct eigenvectors since

qj ∝ eikmja = eimj(2π)/N . (23)

Thus when m = N this is the same as m = 0, since

eij(2π) = 1 (24)

When m = N + 1 this is the same as m = 1 since

ei(N+1)j(2π)/N = eij(2π)/N (25)

Thus the distinct values of m are

km =
m

N

2π

a
m = 0, 1, . . . N − 1 (26)

(b) The force by the j−1 mass on the j-th is

F− = −κ(qj − qj−1) (27)
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Then the work done per time is

dW

dt
= −q̇jκ(qj − qj−1) (28)

(c) The group velocity is

vg =
dω

dk
=
ω0a

2
cos(ka/2) (29)

The energy per mode is

T + U =
∑
j

1

2
mq̇2j +

1

2
κ(qj+1 − qj)2 (30)

leading us to evaluate q̇j and qj+1 − qj. If qj(t, x) = Aei(kja−ωt) then

q̇j = −iωAei(kja−ωt) (31)

where ω is given by Eq. (19). The difference in displacements is

qj+1 − qj =Aei(k(j+1)a−ωt) −Aei(kja−ωt) (32)

=Aei(kja−ωt)(eika − 1) . (33)

Now we need to recall the averaging procedure over time for harmonic quantities. If A(t) =
Re[Aωe

−iωt] and B(t) = Re[Bωe
−iωt], then

A(t)B(t) =
1

2
Re[AB∗] (34)

In this way
1

2
mq̇2j =

1

4
mω2(k)A2 . (35)

And, using that |eika − 1|2 = (2 sin2(ka/2))2 we see that

1

2
κ(qj+1 − qj)2 =

1

4
κA2(2 sin(ka/2))2 . (36)

Using the dispersion relation in Eq. (19)

ω2(k) =
κ

m
(2 sin(ka/2))2 , (37)

the total average energy density is

T + U =
1

2
κA2(2 sin(ka/2))2 . (38)

The energy density times the group velocity is

(T + U)vg = κA2 ω0a(sin(ka/2))2 cos(ka/2) . (39)

6



For comparison below, we measure group velocity in terms of lattice sites per time v̂g = vg/a.
Thus the average energy transmitted across a lattice site per time is

(T + U)v̂g = κA2 ω0(sin(ka/2))2 cos(ka/2) . (40)

Now we want to compare to the average work done by the j−1 site on the j site

dW

dt
= −κq̇j(qj − qj−1) (41)

Then as before
q̇j = A ei(kja−ωt)(−iω) , (42)

and
qj − qj−1 = A ei(kja−ωt)(1− e−ika) . (43)

So using the averaging theorem again we find:

dW

dt
=− 1

2
κA2 Re

[
(−iω)(1− e−ika)∗

]
(44)

=− 1

2
κA2 Re

[
−iω (2ie−ika/2 sin(ka/2))∗

]
(45)

=κA2 ω(k) cos(ka/2) sin(ka/2) (46)

=κA2ω0 cos(ka/2) sin2(ka/2) (47)

This agrees with Eq. (40)
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Solution:

(a)
The equilibrium positions of the particles are

xj = ja j = 1 . . . N (48)

and qj denotes the displacements of the j-th lattice site. We will consider two fictitious
particles at x0 = 0 and xN+1 which are not allowed to move

Then we substitute
qj = Aeikja−ω(k)t (49)

and determine the dispersion curve as usual. The result is the Debye dispersion curve ω(k)
given in Eq. (19).

Now however the boundary conditions at x0 namely

q0 = 0 (50)

can only be satisfied at all times if we takes a superposition of these waves

qj(t) =A
[
eikja−ω(k)t − Ae−ikja−ω(k)t

]
(51)

qj(t) =Ae−iωt sin(kja) (52)

Here it is understood that we are to take the real part of these expressions.
For any arbitrary k the boundary condition at xN+1

qN+1 = 0 (53)

will not be satisfied. Only when k(N + 1)a = mπ (with m integer) will the boundary
conditions be satisfied

km =
π

a

m

N + 1
(54)

In fact not all values of m lead to distinct normal modes. The allowed values are m = 1 . . . N .
This provides an independent set of normal modes

km =
π

a

m

N + 1
m = 1 . . . N (55)

To summarize our general solution for the m-th normal mode is

qj(t) = Re[Ae−iω(km)t] sin(kmja) = A cos(−ω(km)t+ ϕ) sin(kmja) (56)

The general solution is a superposition of these normal modes

qj(t) =
N∑
m=1

Am cos(−ω(km)t+ ϕm) sin(kmja) (57)
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(b) When one end is fixed and one end is free the solution is analogous to (a); Eq. (68)
remains valid. Now, however, the condition of free end point motion is that the force on the
N -th particle by a fictitious N + 1 particle should be zero. Thus we require

qN = qN+1 (58)

In the continuum theory this means that the derivative vanishes at the endpoints.
We need that

sin(kNa) sin(k(N + 1)a) (59)

should be equal. This can happen if the two points exactly straddle the maximum of the sin
curve. Thus we want

km(N + 1
2
)a =

π

2
+mπ (60)

This leads to

kma = π

( 1
2

+m

N + 1
2

)
= π

(
1 + 2m

2N + 1

)
(61)

As is usual not all km are distinct. The N independent normal modes can be taken to be

m = 0 . . . N − 1 (62)

Thus the complete solution in this case is

qj(t) =
N−1∑
m=0

Am cos(−ω(km)t+ ϕm) sin(kmja) (63)

newpage Solution:

(a)
The equilibrium positions of the particles are

xj = ja j = 1 . . . N (64)

and qj denotes the displacements of the j-th lattice site. We will consider two fictitious
particles at x0 = 0 and xN+1 which are not allowed to move

Then we substitute
qj = Aeikja−ω(k)t (65)

and determine the dispersion curve as usual. The result is the Debye dispersion curve ω(k)
given in Eq. (19).

Now however the boundary conditions at x0 namely

q0 = 0 (66)

can only be satisfied at all times if we takes a superposition of these waves

qj(t) =A
[
eikja−ω(k)t − Ae−ikja−ω(k)t

]
(67)

qj(t) =Ae−iωt sin(kja) (68)
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Here it is understood that we are to take the real part of these expressions.
For any arbitrary k the boundary condition at xN+1

qN+1 = 0 (69)

will not be satisfied. Only when k(N + 1)a = mπ (with m integer) will the boundary
conditions be satisfied

km =
π

a

m

N + 1
(70)

In fact not all values of m lead to distinct normal modes. The allowed values are m = 1 . . . N .
This provides an independent set of normal modes

km =
π

a

m

N + 1
m = 1 . . . N (71)

To summarize our general solution for the m-th normal mode is

qj(t) = Re[Ae−iω(km)t] sin(kmja) = A cos(−ω(km)t+ ϕ) sin(kmja) (72)

The general solution is a superposition of these normal modes

qj(t) =
N∑
m=1

Am cos(−ω(km)t+ ϕm) sin(kmja) (73)

(b) When one end is fixed and one end is free the solution is analogous to (a); Eq. (68)
remains valid. Now, however, the condition of free end point motion is that the force on the
N -th particle by a fictitious N + 1 particle should be zero. Thus we require

qN = qN+1 (74)

In the continuum theory this means that the derivative vanishes at the endpoints.
We need that

sin(kNa) sin(k(N + 1)a) (75)

should be equal. This can happen if the two points exactly straddle the maximum of the sin
curve. Thus we want

km(N + 1
2
)a =

π

2
+mπ (76)

This leads to

kma = π

( 1
2

+m

N + 1
2

)
= π

(
1 + 2m

2N + 1

)
(77)

As is usual not all km are distinct. The N independent normal modes can be taken to be

m = 0 . . . N − 1 (78)

Thus the complete solution in this case is

qj(t) =
N−1∑
m=0

Am cos(−ω(km)t+ ϕm) sin(kmja) (79)
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Problem 3. Group velocity of a chain from a continuum theory

(a) Determine the frequencies of the eigen-vibrations of a system of 2N particles, alternat-
ing with masses m and M , connected by springs of elastic constant γ and separation
a. This is similar to the problem shown in Fig. 33d above, but we will we assume
periodic boundary conditions, qN(t) = q−N(t)

Hint: Try an ansatz

qj =ξ1e
i(kxj−ωt) (80)

qj+1 =ξ2e
i(kxj+1−ωt) (81)

and find a two-by-two eigen value equation for (ξ1, ξ2). This gives two eigen frequencies
ω±(k) for each value of k.

(b) Determine the dispersion curve ω±(k) at small k, ka� 1, to order k3 and sketch ω+(k)
and ω−(k) at small k on the same graph. Determine the group velocity to order k2.

(c) When the wavelength of the waves of part (a) is very long, the microscopic details of
the discrete model in (a), are unimportant. A continuum theory can reproduce the
results of the model in (a), provided the “low energy” constants of the continuum
theory are adjusted to match certain physical properties.

Consider the action from a previous problem

S =

∫
dt dx

1

2
µ(∂tq)

2 − T

2
(∂xq)

2 − α(∂2xq)
2 (82)

From the equation of motion you found previously, determine the dispersion curve ω(k)
associated with this action. What should the values of the “low-energy constants”, µ,
T and α be set to if the continuum action in Eq. (82), is to reproduce the dispersion
curve of the discrete theory of parts (a) and (b) at small k for the “plus” modes (i.e.
the modes with eigenfrequencies ω+(k) in the discrete theory) and how should they be
tuned to reproduce the “minus” modes.
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Solution:

(a) We have to work out the Lagrangian

L =
N∑
j=1

1

2
mq̇22j−1 +

1

2
MQ̇2

2j−
1

2
κ(Q2j−q2j−1)2−

1

2
κ(q2j−1−Q2j−2)

2− 1

2
κ(q2j+1−Q2j)

2 (83)

The equations of motion which follows here for the small mass objects are

mq̈2j−1 =κ(Q2j − q2j−1)− κ(q2j−1 −Q2j−2) (84)

mq̈2j−1 =κ(Q2j − 2q2j−1 +Q2j−2) (85)

while the heavy objects satisfy

MQ̈2j =− κ(Q2j − q2j−1) + κ(q2j+1 −Q2j) (86)

MQ̈2j =κ(q2j+1 − 2Q2j + q2j−1) (87)

Now we try a wave form

q2j−1 =A1e
i(k(2j−1)a+ωt) (88)

Q2j =A2e
i(k(2j)a+ωt) (89)

Plugging it in to the equations of motion we find an eigenvalue equation the allowed fre-
quencies:

−ω2

(
m 0
0 M

)(
A1

A2

)
=

(
−2κ κ(eika + e−ika)

κ(eika + e−ika) −2κ

)(
A1

A2

)
(90)

The eigen solutions of this equation are

ω2(k) =
κ

µ
±

√(
κ

µ

)2

− 4κ2

mM
sin2(ka) (91)

where the reduced mass is

µ̂ =
mM

(m+M)

1

µ̂
=

1

m
+

1

M
(92)

We will leave it here as it is sufficient for the next problem.
We expand the eigen frequencies at small k, keeping only ω− whose frequency approaches

zero as k → 0. This is the only wavelike solutions at small k. ω+ approaches a constant as
k → 0. ω− has the expansion at small k of the form

ω2
− =

2a

M +m
(aκ)k2 +

2a

M +m
(aκ)

[
−1

3
+

mM

(M +m)2

]
(a2k4) (93)
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Let us introduce the mass per length µ, the Youngs modulus κa, and the phase velocity
v0, as was done for the simple chain in lecture

µ ≡M +m

2a
(94)

Y ≡κa (95)

v20 ≡
Y

µ
(96)

With this notation the dispersion curve reads

ω2
− = v20k

2 − v20
(

1

3
− mM

(M +m)2

)
a2k4 + . . . (97)

Taking a square root we have

ω−(k) = v0k

(
1− a2k2

2

(
1
3
− mM

(M +m)2

)
+ . . .

)
(98)

and the group velocity is

vg = v0

(
1− 3a2k2

2

(
1
3
− mM

(M +m)2

)
+ . . .

)
(99)

(b) The wave equation from this action is[
−∂t(µ∂tq) + ∂x(T∂xq)− 2α∂4xq

]
= 0 (100)

The mass per length and the Tension/Youngs Modulus are identified with

µ =
M +m

2a
. (101)

T =Y = κa . (102)

Substituting e−iωt+ikx into the wave equation we find that the dispersion curve is

ω2 − v20k2 −
2α

µ
k4 = 0 (103)

So in order for the continuum theory to reproduce the microscopic physics we require

2α

µ
k4 = −v20

(
1

3
− mM

m+M

)
a2k4 (104)

Thus the low energy constant α is for this microscopic theory

α = −(Y a2)

2

(
1

3
− mM

m+M

)
(105)
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