
Problem 1. (MIT/OCW) Spring system on a plane

A massless spring has an unstretched length b and spring constant k, and is used to connect
two particles of mass m1 and m2. The system rests on a frictionless table and may oscillate,
translate, and rotate.

(a) What is the Lagrangian? Write it with two-dimensional cartesian coordinates r1 =
(x1, y1) and r2 = (x2, y2). There are four coordinates in total.

(b) Setup a suitable set of generalized coordinates (four in total) to better account for the
symmetries of this system. Take one of your coordinates to be r = |r1 − r2|. What is
the Lagrangian in these variables?

(c) Identify three conserved generalized momenta that are associated to cyclic coordinates
in the Lagrangian from part (b). If you think you are missing some, try to improve
your answer to (b). Briefly explain the physical meaning of each of the three conserved
generalized momenta. Show that the equation of motion for r takes the form

meff r̈ = −∂Veff(r)

∂r
(1)

with an appropriate meff and Veff(r).

(d) Write down the hamiltonian function h(q, q̇, t) for the coordinates chosen in (b). Show
that that the velocity ṙ associated with the coordinate r (here r = |r1−r2| is distance
between the particles) can be determined from the energy E and an effective potential
Veff(r) which depends on the rotation rate, i.e. show that

1

2
meff ṙ

2 + Veff(r) = E (2)

(e) By examining the effective potential and its dependence on the rotation rate, show that
there is a solution that rotates but does not oscillate, and discuss what happens to this
solution for an increased rate of rotation. (A closed form solution is not necessary. A
graphical explanation based on the effective potential will suffice.)
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Solution:

(a) See below

(b) The Lagrangian is L = T − V

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − U(|r1 − r2|) (3)

Here U(r) = 1
2
k(r − b)2. In passing to the second line we have defined the cente of

mass and relative coordinates

M ≡m1 +m2 (4)

µ ≡m1m2/M (5)

R ≡(m1r1 +m2r2)/M (6)

r ≡r1 − r2 (7)

With the more explicit forms we have

R = (X, Y ) r = r(cosφ, sinφ) (8)

The Lagrangian becomes

L =
1

2
M(Ẋ2 + Ẏ 2) +

1

2
µ(r2 + r2φ̇2)− U(r) (9)

(c) There are three cylic coordinates X, Y, φ leading to three conserved quantities

pX =
∂L

∂Ẋ
= MẊ (10)

pY =
∂L

∂Ẏ
= MẎ (11)

pφ =
∂L

∂φ̇
= µr2φ̇ (12)

These are the linear momenta of the center of mass and the angular momentum of the
system. The only non-trivial equation of motion is

d

dt

∂L

∂ṙ
=
∂L

∂r
(13)

µr̈ =µrφ̇2 − ∂U

∂r
(14)

Noting that pφ is constant, the µr2φ̇ term is

µr2φ̇2 =
p2
φ

µr3
(15)

=− ∂

∂r

(
p2
φ

2µr2

)
, (16)

leading to the overall EOM:

µr̈ = −∂Veff

∂r
Veff(r, pφ) ≡

p2
φ

2µr2
+ U(r) . (17)
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(d) The hamiltonian function is

h =pXẊ + pyẎ + pφφ̇+ prṙ − L (18)

=
1

2
M(Ẋ2 + Ẏ 2) +

1

2
µ(ṙ2 + φ̇2) + U(r) (19)

When the hamiltonian function is evaluated using the equation of motion, we have
h = E and pX , pY and pφ are constants, leading to

ε ≡E − p2
X

2m
+
p2
Y

2m
(20)

ε =
1

2
µṙ2 + Veff(r, pφ) (21)

(e) A plot of the Veff is shown below. At the minimum of the effective potential (were
∂V/∂r = 0) the system rotates without oscillations, since

µr̈ = −∂Veff

∂r
(22)

As the system rotates faster and faster, the non-oscillating spring stretches more and
more counterbalancing the centrifugal force.
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Figure 1: A plot with units m = k = b = 1 for different values of pφ/mω0b with ω0 =
√
k/m.
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Problem 2. (Goldstein/MIT OCW) Jerky Mechanics

Consider an extension of classical mechanics where the equation of motion involves a triple
time derivative,

...
x = f(x, ẋ, ẍ, t). Lets use the action principle to derive the corresponding

Euler-Lagrange equations. Start with a Lagrangian of the form L(qi, q̇i, q̈i, t) for n generalized
coordinates qi, and make use of the action principle for paths qi(t) that have zero variation
of both qi and q̇i at the end points. Show that

d2

dt2

(
∂L

∂q̈i

)
− d

dt

(
∂L

∂q̇i

)
+
∂L

∂qi
= 0 (23)

for each i = 1 . . . n

Solution:

Sending qi → qi + δqi the action S[q] changes as

δS =

∫
dt

(
∂L

∂q̈

d2δq

dt2
+
∂L

∂q̇

dδq

dt
+
∂L

∂q
δq

)
. (24)

We integrate by parts twice for the q̈ terms yielding

δS =
∂L

∂q̈
δq̇ − d

dt

(
∂L

∂q̈

)
δq +

∂L

∂q̇
δq

∣∣∣∣t2
t1

+

∫
dt

(
d2

dt2

(
∂L

∂q̈

)
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q

)
δq . (25)

The bourndary term vanish by the constraints at the ends, e.g. δq(t1) = δq̇(t1) = 0. Then
since δq is otherwise arbitrary this yields the EOM as claimed

d2

dt2

(
∂L

∂q̈

)
− d

dt

(
∂L

∂q̇

)
+
∂L

∂q
= 0 . (26)
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Problem 3. Equivalent Lagrangians

(a) (Goldstein) Let L(q, q̇, t) be the Lagrangian for a particle with coordinate q, which
satisfies the Euler-Lagrange equations. Show that the Lagrangian

L′ = L+
dF (q, t)

dt
(27)

yields the same Euler-Lagrange equations as L where F is an arbitrary differentiable
function. Give a proof based on and the action principle. We say that L and L′ are
equivalent. (If you feel like it you might also like to check directly that the EOM are
the same.)

(b) (Goldstein) Using the previous problem (Problem 3), what is the equation of motion
resulting from

L = −1

2
mqq̈ − 1

2
mω2

0q
2 (28)

and what is it related to? Explain why this equation of motion is obvious from the
Lagrangian in Eq. (28) and the result of part (a).

(c) Consider the action of a free particle

S[r(t)] =

∫
dt Cv2 (29)

where C = m/2 is a constant normally associated with the mass. Show that the action
is unchanged (up to boundary terms) by a Galilean transformation, and hence the
transformed version gives the same EOM. If the Lagrangian took the form L = Cv4

this would not have been the case. Thus requiring Gallilean invariance fixes the form
the velocity dependent action to involve the kinetic energy.

(d) Consider a fricitionless block of mass m in one dimension. The block sits on a train,
which accelerates with constant acceleration a0. The block experiences no forces, and
thus the action of the block is simply the free one

S =

∫
dt

1

2
mv2

g , (30)

where vg(t) is the velocity relative to the ground. Let v(t) denote the velocity of the
block relative to the back of the train.

(i) Write down the relation between v(t) and vg(t), and substitute into Eq. (30) to
determine the Lagranngian for v(t).

(ii) Show that this Lagrangian is equivalent to that of a particle in a potential U(x) =
ma0x where x is the position of the particle relative to the back of the train, and
interpret the result.
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Solution:

(a) Clearly the the action with L′ only differs by an endpoint contribution

S ′[q] =

∫ t2

t1

dt (L+
dF

dt
) (31)

= F (q(t), t)|t2t1 +

∫ t2

t1

dt L (32)

= F (q(t), t)|t2t1 + S[q] (33)

Since F (q, t) is only on the boundary, it does not change as we vary q. Thus the
variation of the action S ′[q] (with the endpoints fixed) is the same the variation of S[q]
(with endpoints fixed) yielding the same equations of motion

δS ′[q, δq] = δS[q, δq] = 0 (34)

(b) We can use the equations of motion for the previous problem

− 1

2
mq̈ + 0 +

(
−1

2
mq̈ −mω2

0q

)
= 0 (35)

i.e. the equation of motion of the SHO

mq̈ +mω2
0q = 0 (36)

This is obvious, as we can integrate by parts, leaving the SHO oscillator lagrangian
plus neglectable total derivs:

L =− 1

2
mqq̈ − 1

2
mω2

0q
2 (37)

=
1

2
mq̇2 − 1

2
mω2

0q
2 − d

dt

(
1

2
mqq̇

)
(38)

=LSHO +
d

dt
(ignore−me) (39)

(c) The action for coordinate r is

S[r] =

∫
dtCṙ2 (40)

In a frame moving with velocity u to right, the coordinates in the new frame r′ are
related to the old coordinate r via

ṙ → r′ = r − u t (41)
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or r = r′ + u t. The action for the coordinate r′ is therefore

S[r′] =

∫
dtCṙ2 (42)

=

∫
dtCṙ′2 + 2Cṙ′ · u + Cu2 (43)

=

∫
dtCṙ′2 +

d

dt

(
2Cr′ · u + Cu2t

)
(44)

=

∫
dtCṙ′2 + total derivs (45)

Thus the equation of motion for r′ will be the same as for r since they have the same
action up to a boundary term.

(d) The position of the back of the train is 1
2
a0t

2 and thus the coordinates are related

xg(t) = x(t) + 1
2
a0t

2 . (46)

So
ẋg = ẋ+ a0t (47)

We have

S[x] =

∫
1

2
m(ẋ+ a0t)

2 (48)

=

∫
1

2
mẋ2 +mẋa0t+

1

2
ma2

0t
2 (49)

The last term is a independent of x and can be ignored (we only care about the variation
of δS and this term is constant under the variation). The second to last term can be
integrated by parts

S[x] =

∫
1

2
mẋ2 +mẋa0t (50)

=

∫
1

2
mẋ2 −ma0x+

d

dt
(mxa0t) (51)

=

∫
1

2
mẋ2 −ma0x+ (total derivs) (52)

This (without the irrelevant total-derivs) is the action for a particle experiencing a
constant force Fx = −ma0, i.e. a force pushing the particle to the left, towards the
back of the train. This is the expected effective force because we are viewing the motion
in the coordinate system of the accelerating train.
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