Problem 1. Particle in an electro-magnetic field

A non-relativistic particle of charge q in a electro-magnetic field is described by the Lagrangian (try to remember this!)

$$
\begin{equation*}
L=\frac{1}{2} m \dot{\boldsymbol{r}}^{2}-q \phi+q \frac{\dot{\boldsymbol{r}}}{c} \cdot \boldsymbol{A} \tag{1}
\end{equation*}
$$

where $\phi(t, \boldsymbol{r}(t))$ is the scalar potential, and $\boldsymbol{A}(t, \boldsymbol{r}(t))$ is the vector potential of electricity and magnetisim. The electric and mangic fields are related to ϕ and \boldsymbol{A} through

$$
\begin{align*}
\boldsymbol{E}(t, \boldsymbol{r}) & =-\nabla \phi-\frac{1}{c} \partial_{t} \boldsymbol{A} & E_{i} & =-\partial_{i} \phi-\frac{1}{c} \partial_{t} A_{i} \tag{2}\\
\boldsymbol{B}(t, \boldsymbol{r}) & =\nabla \times \boldsymbol{A} & \epsilon_{i j k} B^{k} & =\partial_{i} A_{j}-\partial_{j} A_{i}
\end{align*}
$$

(a) Show that the Euler-Lagrange equations give the expected EOM for a particle experiencing the force law: $\boldsymbol{F}=q\left(\boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right)$.
(b) Compute the canonical momementa \boldsymbol{p}. How is this related to the so called kinetic momentum $\boldsymbol{p}_{\text {kin }}=m \dot{\boldsymbol{r}}$? Use part (a) to determine

$$
\begin{equation*}
\frac{d\left(\boldsymbol{p}-\frac{q}{c} \boldsymbol{A}\right)}{d t} \tag{4}
\end{equation*}
$$

(c) Determine the Hamiltonian $H(\boldsymbol{r}, \boldsymbol{p})$ and Hamiltonian function $h(\boldsymbol{r}, \dot{\boldsymbol{r}})$.
$H(\boldsymbol{r}, \boldsymbol{p})$ and $h(\boldsymbol{r}, \dot{\boldsymbol{r}})$ return the same value (at corresponding points), but have different functional forms (meaning that they have different dependences on the arguements). A mathematician would (correctly) say that they are different functions, but we (too) loosely say that they are the "same".
(d) (Optional. Not graded) Compute $d \boldsymbol{p} / d t$ from the Hamiltonian formalism, and show that it leads to the somewhat unintuitive result

$$
\begin{equation*}
\frac{d p_{i}}{d t}=-q \partial_{i} \phi+\frac{q}{c} \dot{r}^{j} \partial_{i} A_{j} \tag{5}
\end{equation*}
$$

Rederive Eq. (4) from Hamilton's equations of motion.

Solution:

(a) Constructing the Euler Lagrange equations

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{r}^{i}}\right) & =\frac{\partial L}{\partial r^{i}} \tag{6}\\
\frac{d}{d t}\left(m \dot{r}_{i}+\frac{q}{c} A_{i}\right) & =-q \partial_{i} \phi+\frac{q}{c} \dot{r}^{j} \partial_{i} A_{j} \tag{7}
\end{align*}
$$

where we used the indexed notation, e.g.

$$
\begin{equation*}
\partial_{i} A_{j}=\frac{\partial}{\partial r^{i}} A_{j}(t, \boldsymbol{r}) \tag{8}
\end{equation*}
$$

Then differentiating away we have

$$
\begin{equation*}
\frac{d}{d t} A_{i}=\partial_{t} A_{i}+\partial_{j} A_{i} \dot{r}^{j} \tag{9}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{d}{d t}\left(m \dot{r}_{i}\right)=q\left(-\partial_{i} \phi-\frac{1}{c} \partial_{t} A_{i}\right)+\frac{q}{c} v^{j}\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right) \tag{10}
\end{equation*}
$$

Recognizing the electric and magnetic fields

$$
\begin{equation*}
\partial_{i} A_{j}-\partial_{j} A_{i}=\epsilon_{i j k} B_{k} \tag{11}
\end{equation*}
$$

we find

$$
\begin{equation*}
\frac{d}{d t}\left(m \dot{r}_{i}\right)=q E_{i}+\frac{q}{c} \epsilon_{i j k} v^{j} B^{k} \tag{12}
\end{equation*}
$$

which is the Lorentz force law $\boldsymbol{F}=q(\boldsymbol{E}+\boldsymbol{v} / c \times \boldsymbol{B})$
(b) The canonical momentum is

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{r}^{i}}=m \dot{r}_{i}+\frac{q}{c} A_{i} \tag{13}
\end{equation*}
$$

We have $\boldsymbol{p}_{i}=\boldsymbol{p}_{\text {kin }}+q / c \boldsymbol{A}$. So

$$
\begin{equation*}
\frac{d(\boldsymbol{p}-q / c \boldsymbol{A})}{d t}=\frac{d \boldsymbol{p}_{\mathrm{kin}}}{d t}=\boldsymbol{F} \tag{14}
\end{equation*}
$$

(c) The Lagrangian is cast in a general form discussed in class

$$
\begin{equation*}
L=\frac{1}{2} m \delta_{i j} \dot{r}^{i} \dot{r}^{j}+\frac{q}{c} \dot{r}^{i} A_{i}-q \phi(r) \tag{15}
\end{equation*}
$$

We find from general results derived in class

$$
\begin{equation*}
h=\frac{1}{2} m \delta_{i j} \dot{r}^{i} \dot{r}^{j}+q \phi \tag{16}
\end{equation*}
$$

The canonical momentum

$$
\begin{equation*}
p_{i}=m \dot{r}_{i}+\frac{q}{c} A_{i} \tag{17}
\end{equation*}
$$

And then

$$
\begin{align*}
& H(\boldsymbol{p}, \boldsymbol{r})=\frac{1}{2 m} \delta^{i j}\left(p_{i}-\frac{q}{c} A_{i}\right)\left(p_{j}-\frac{q}{c} A_{j}\right)+q \phi \tag{18}\\
& H(\boldsymbol{p}, \boldsymbol{r})=\frac{1}{2 m}\left(\boldsymbol{p}-\frac{q}{c} \boldsymbol{A}\right)^{2}+q \phi \tag{19}
\end{align*}
$$

(d) The Hamilton equations of motion give

$$
\begin{align*}
\frac{d r^{i}}{d t} & =\frac{p^{i}-q / c A^{i}}{m} \tag{20}\\
\frac{d p_{i}}{d t} & =-q \partial_{i} \phi+\frac{q}{c}\left(\frac{p^{j}-q / c A^{j}}{m}\right) \partial_{i} A_{j} \tag{21}\\
& =-q \partial_{i} \phi-\frac{q}{c} \dot{r}^{j} \partial_{i} A_{j} \tag{22}
\end{align*}
$$

In order to see the force law we subtract:

$$
\begin{equation*}
\frac{q}{c} \frac{d A_{i}}{d t}=\frac{q}{c} \partial_{t} A_{i}+\frac{q}{c} \partial_{j} A_{i} \dot{r}^{j} \tag{23}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{d}{d t}\left(p_{i}-\frac{q}{c} A_{i}\right)=q(\boldsymbol{E}+\dot{\boldsymbol{r}} / c \times \boldsymbol{B})_{i} \tag{24}
\end{equation*}
$$

Problem 2. A Routhian tutorial and the effective potential

Consider the Kepler Lagrangian again:

$$
\begin{equation*}
L=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\phi}^{2}-U(r) \tag{25}
\end{equation*}
$$

There are two variables r and ϕ with associated momenta p_{r} and p_{ϕ}. The Hamiltonian is is formed by Legendre transforming with respect to r and ϕ

$$
\begin{equation*}
H=p_{r} \dot{r}+p_{\phi} \dot{\phi}-L(r, \dot{r}, \phi, \dot{\phi}) . \tag{26}
\end{equation*}
$$

It can be convenient to Legendre transform with respect to only some of the variables instead of all of them. We define the Routhian ${ }^{1}$:

$$
\begin{equation*}
R\left(r, \dot{r}, \phi, p_{\phi}\right) \equiv p_{\phi} \dot{\phi}-L(r, \dot{r}, \phi, \dot{\phi}) \tag{27}
\end{equation*}
$$

which serves as a Hamiltonian for ϕ, but a Lagrangian for r. This is especially helpful when some of the coordinates are cyclic (ϕ in this case). The p_{ϕ} are then just constants (both in the equation of motion and in the action), and we have effectively a Lagrangian for the remaining (non-cyclic) coordinates.
(a) From the Lagrange equations of motion, show that the Routhian equations of motion (for a generic Lagrangian not just Eq. (25)) are

$$
\begin{align*}
\frac{d \phi}{d t} & =\frac{\partial R}{\partial p_{\phi}} \tag{28}\\
\frac{d p_{\phi}}{d t} & =-\frac{\partial R}{\partial \phi} \tag{29}\\
\frac{d}{d t} \frac{\partial R}{\partial \dot{r}} & =\frac{\partial R}{\partial r} \tag{30}
\end{align*}
$$

(b) Determine $R\left(r, \dot{r}, \phi, p_{\phi}\right)$ for the Lagrangian in Eq. (25) and the Routhian equations of motion. You should find ${ }^{2}$

$$
\begin{equation*}
-R=\frac{1}{2} m \dot{r}^{2}-V_{\mathrm{eff}}\left(r, p_{\phi}\right) \tag{31}
\end{equation*}
$$

where $V_{\text {eff }}\left(r, p_{\phi}\right)$ was defined in class and the equation of motions are

$$
\begin{align*}
m \ddot{r} & =-\frac{\partial V_{\text {eff }}\left(r, p_{\phi}\right)}{\partial r} \tag{32}\\
p_{\phi} & =\text { const } \tag{33}
\end{align*}
$$

Now might be a good time to review the appropriate comments on bottom of pg. 2 and 3 in lecture to appreciate the how the Routhian can help, i.e. we want $\left(\partial V_{\text {eff }} / \partial r\right)_{p_{\phi}}$.

[^0](c) A particle of mass m is confined to move on the surface of a sphere. It moves freely on the surface but experiences the acceleration of gravity g :
(i) Write down the Lagrangian for this system using the spherical angular variables θ, ϕ.
(ii) Form the Routhian for this system by Legendre transforming with respect to the cyclic coordinate.
(iii) Sketch the effective potential of θ for p_{ϕ} small and large, after defining what large and small means. Determine the stationary point of θ at large p_{ϕ}, and briefly describe the result physically.

Routhian tutorial
(a) $d L=P \phi d \dot{\phi}+\frac{\partial L}{\partial \phi} d \phi+$ other spectators

Then

$$
\begin{aligned}
\theta d R & =d(p \phi \dot{\phi}-L) \\
& =\dot{\phi} d p \phi+p \phi d \dot{\phi}-d L \\
& =\dot{\phi} d p \phi-\frac{\partial L}{\partial \phi} d \phi-\text { other spectators }
\end{aligned}
$$

- So

$$
\frac{\partial R}{\partial p \phi}=\dot{\phi}
$$

and $\quad \frac{\partial R}{\partial \phi}=-\frac{\partial L}{\partial \phi}$

- Now the Lagrange EOM for ϕ are

$$
\frac{d}{d t} \rho \phi=\frac{\partial L}{\partial \phi} \Rightarrow \frac{d \rho \phi}{d t}=-\frac{\partial R}{\partial \phi}
$$

- The remaining variables are spectators

$$
\frac{\partial R}{\partial \dot{r}}=\frac{-\partial L}{\partial \dot{r}} \quad \frac{\partial R}{\partial r}=-\frac{\partial L}{\partial r}
$$

So from the Euler Lagrange EOM read

$$
-\frac{d}{d t} \frac{\partial R}{\partial \dot{r}}=-\frac{\partial R}{\partial r}
$$

b) Now

$$
L=\frac{1}{2} m \dot{r}^{2}+\frac{1}{2} m r^{2} \dot{\phi}^{2}-U(r)
$$

- Then

$$
P \phi=\frac{\partial L}{\partial \phi}=m r^{2} \phi \quad \Rightarrow \quad \dot{\phi}=\frac{P \phi}{m r^{2}}
$$

- So

$$
\begin{aligned}
& -R=L-p \phi \dot{\phi}=\left(\frac{1 m \dot{r}^{2}}{2}+\frac{p_{\phi}^{2}}{2 m r^{2}}-U(r)\right) \\
& -R=\frac{1}{2} m \dot{r}^{2}-\left(\frac{p \phi_{\phi}^{2}}{2 m r^{2}}+U(r)\right) \\
& -\frac{P_{\phi}^{2}}{m r^{2}}
\end{aligned}
$$

(c) Then first we need coordinates

$$
\begin{aligned}
& x=a \sin \theta \cos \phi \\
& y=a \sin \theta \sin \phi \\
& z=-a \cos \theta
\end{aligned}
$$

- So straightforward algebra or geometry gives

$$
\begin{aligned}
T & =\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \dot{y}^{2}+\frac{1}{2} m \dot{z}^{2} \\
& =\frac{1}{2} m a^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)
\end{aligned}
$$

And since $u=+m g z$ and $L=T-U$ we have
(1) $L=\frac{1}{2} m a^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+m g a \cos \theta$
(ii) The ϕ coordinate is cyclic

$$
\begin{aligned}
P \phi=m a^{2} \sin ^{2} \theta \dot{\phi}= & \text { angular momentum } \\
& \text { in the } z \text { direction }
\end{aligned}
$$

The Routhian is

$$
-R=L-p_{\phi} \dot{\phi}
$$

$$
-R=\frac{1}{2} m a^{2} \dot{\theta}^{2}-(\underbrace{\frac{p \phi}{2 m a^{2} \sin ^{2} \theta}}_{V_{\text {eff }}}-m g a \cos \theta)
$$

(iii) Then

$$
V e f f=\frac{P_{\phi}^{2}}{2 m a^{2} \sin ^{2} \theta}-m g a \cos \theta
$$

So p_{ϕ} is small when

$$
\frac{p^{2} \phi}{2 m c^{2}} \ll m g a
$$

and large when the equality is reversed

At

- small pd, the potential is only modified at $\Theta=0$, π
- For Large p\& the potential scarcely modifies the centrifugal barriers

- The minimum of $V(\theta)$ determines the stationary point. Near $\theta=\pi / 2$ we expand $\delta=\theta-\pi / 2$

$$
\begin{aligned}
& \frac{1}{\sin ^{2} \theta} \simeq \frac{1}{\left(1-\delta^{2} / 2\right)^{2}} \simeq 1+\delta^{2} \\
& -\cos \theta \simeq \delta
\end{aligned}
$$

So rear $\Theta=\pi / 2$:

- $V_{\text {eff }}=\frac{p^{2} \phi}{2 m a^{2}}\left(1+\delta^{2}\right)+m g a \delta$, with minimum
- $\frac{\partial V_{e} f f}{\partial \delta}=\frac{P_{\phi}^{2} \delta+m g a=0}{m a^{2}}$
- So the stationary point is just below $\pi / 2$

$$
\delta=-m g\left(\frac{m a^{3}}{p^{2} \phi}\right)
$$

So in the limit $\rho_{\phi} \rightarrow \infty$ the bead is going around so fast it is pushed by the centrifugal force to $\theta \simeq \pi / 2$. But, then gravity sets in decreasing the angle slightly. The deficit from $\pi / 2$ is the ratio of the gravitational force to the (Large) centrifugal force.

Problem 3. A sliding conical pendulum

Consider two beads connected by a light rod of length ℓ. The first bead has mass m_{1} and is constrained to lie in the x, y plane, but may move freely in this plane. The second bead has mass m_{2} and can move freely in all three dimensions, and can pass freely through the x, y plane. The system sits in the earths gravitational field $\boldsymbol{g}=-g \hat{\mathbf{z}}$.

(a) Determine the distance from m_{1} to the center of mass. You should find

$$
\begin{equation*}
\ell_{\mathrm{cm}}=\alpha \ell, \quad \alpha \equiv \frac{m_{2}}{M}, \quad M \equiv\left(m_{1}+m_{2}\right) \tag{34}
\end{equation*}
$$

which establishes some notation used below.
(b) Clearly define some appropriate generalized coordinates for the system, and write down the Lagrangian of the system in terms of these coordinates.

Hint: The cartesian coordinates (X, Y, Z) of the center of mass is an excellent choice. Then I used the the spherical coordinates θ and ϕ to orient the rod relative to the center of mass. I find the Lagrangian takes the form

$$
\begin{equation*}
L=\frac{1}{2} M\left(\dot{X}^{2}+\dot{Y}^{2}\right)+\frac{1}{2} m_{0}(\theta) \ell^{2} \dot{\theta}^{2}++\frac{1}{2} \mu \ell^{2} \sin ^{2} \theta \dot{\phi}^{2}+M g \alpha \ell \cos \theta \tag{35}
\end{equation*}
$$

where $m_{0}=M \alpha^{2} \sin ^{2} \theta+\mu$ and $\mu=m_{1} m_{2} / M$ is the reduced mass.
(c) Identify all integrals of the motion.

Now consider the case where the first bead is initially at rest and the second bead initially has velocity v_{0} in the x, y plane, and perpendicular to the rod, before beginning to fall (see below).

Figure 1: The period of the motion (normalized by $2 \pi \ell / v_{0}$) as a function of u (see text).
(d) Describe qualitatively the subsequent motion of the system. In what Galilean frame is the motion periodic? Explain.
(e) (i) The pendulum swings down from an initial angle of $\pi / 2$ relative to the vertical to a minimum angle. Determine this minimum angle.
You should find

$$
\begin{equation*}
\cos \theta_{-}=\frac{-1+\sqrt{1+4 u^{2}}}{2 u} \quad \theta_{-}<\pi / 2 \tag{36}
\end{equation*}
$$

where $u=M g \alpha \ell / \frac{1}{2} \mu v_{0}^{2}$.
(ii) Determine the associated period of the motion as a definite integral. Define what is meant by large and small v_{0} and describe the motion qualitatively in these two limits.
You should show that this period takes the form

$$
\begin{equation*}
\mathcal{T}=\tau_{0} f\left(u, m_{1} / m_{2}\right) \tag{37}
\end{equation*}
$$

where $\tau_{0} \equiv \ell / v_{0}$ and $f(u, r)$ is a dimensionless function of u and the ratio of masses $r=m_{1} / m_{2}$. Use mathematica to plot to make a plot of $\mathcal{T} /\left(2 \pi \tau_{0}\right)$ for $m_{1}=m_{2}$, which is exhibited above.

Solution

(a) From the picture, the center of mass is a distance $m_{2} \ell / M \equiv \alpha \ell$ from the first particle m_{1} which is attached to the plane.
(b) It makes sense to use center of mass coordinates. Let us denote $M=m_{1}+m_{2}$ as the total mass. The center of mass is mass coordinate $\boldsymbol{R}=(X, Y, Z)$

$$
\begin{equation*}
\boldsymbol{R}=\frac{m_{1}}{M} \boldsymbol{r}_{1}+\frac{m_{2}}{M} \boldsymbol{r}_{2} . \tag{38}
\end{equation*}
$$

The relative coordinate is $\boldsymbol{r}=(x, y, z)$ is

$$
\begin{equation*}
\boldsymbol{r}=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, \tag{39}
\end{equation*}
$$

and the reduced mass is $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$. The kinetic energy is

$$
\begin{equation*}
T=\frac{1}{2} M \dot{\boldsymbol{R}}^{2}+\frac{1}{2} \mu \dot{\boldsymbol{r}}^{2} . \tag{40}
\end{equation*}
$$

The vector \boldsymbol{r} has a fixed length and is conveniently parameterized by two angles

$$
\begin{align*}
& x=\ell \sin (\theta) \cos \phi, \tag{41}\\
& y=\ell \sin (\theta) \sin \phi, \tag{42}\\
& z=\ell \cos (\theta) . \tag{43}
\end{align*}
$$

Now the angle θ is related to the height of the center of mass. From the picture, the center of mass is a distance $m_{2} \ell / M \equiv \alpha \ell$ from the first particle m_{1} which is attached to the plane. We have from geometry

$$
\begin{equation*}
Z=-\alpha \ell \cos \theta \tag{44}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\dot{Z}=\alpha \ell \sin \theta \dot{\theta} \tag{45}
\end{equation*}
$$

and then the kinetic energy is

$$
\begin{equation*}
T=\frac{1}{2} M\left(\dot{X}^{2}+\dot{Y}^{2}+\alpha^{2} \ell^{2} \sin ^{2}(\theta) \dot{\theta}^{2}\right)+\frac{1}{2} \mu \ell^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right) . \tag{46}
\end{equation*}
$$

The potential energy is $U=M g Z$. Thus the full Lagrangian is

$$
\begin{equation*}
L=\frac{1}{2} M\left(\dot{X}^{2}+\dot{Y}^{2}+\alpha^{2} \ell^{2} \sin ^{2} \theta \dot{\theta}^{2}\right)+\frac{1}{2} \mu \ell^{2}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+M g \alpha \ell \cos \theta . \tag{47}
\end{equation*}
$$

Since two of the terms are very similar, we define

$$
\begin{equation*}
m_{0}(\theta)=M \alpha^{2} \sin ^{2} \theta+\mu, \tag{48}
\end{equation*}
$$

leading to our final result

$$
\begin{equation*}
L=\frac{1}{2} M\left(\dot{X}^{2}+\dot{Y}^{2}\right)+\frac{1}{2} m_{0}(\theta) \ell^{2} \dot{\theta}^{2}+\frac{1}{2} \mu \ell^{2} \sin ^{2} \theta \dot{\phi}^{2}+M g \alpha \ell \cos \theta . \tag{49}
\end{equation*}
$$

(c) The are several cyclic coordinates owing to the symmetries of the problem.First there is the total momentum of the system

$$
\begin{align*}
& p_{X}=\frac{\partial L}{\partial \dot{X}}=M \dot{X} \tag{50}\\
& p_{Y}=\frac{\partial L}{\partial \dot{Y}}=M \dot{Y} . \tag{51}
\end{align*}
$$

Then there is the angular momentum around the Z axis.

$$
\begin{equation*}
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=\mu \ell^{2} \sin ^{2} \theta \dot{\phi} \tag{52}
\end{equation*}
$$

Finally there is the total energy of the system

$$
\begin{equation*}
E=\frac{p_{X}^{2}}{2 M}+\frac{p_{Y}^{2}}{2 m}+\frac{1}{2} m_{0}(\theta) \ell^{2} \dot{\theta}^{2}+\frac{p_{\phi}^{2}}{2 \mu \ell^{2} \sin ^{2}(\theta)}-M g \alpha \ell \cos \theta \tag{53}
\end{equation*}
$$

(d) In a frame which moves with the center of mass the motion will be periodic. The initial momenta are $p_{1}^{y}=0$ and $p_{2}^{y}=m_{2} v_{0}$ and

$$
\begin{align*}
p_{X} & =0, \tag{54}\\
p_{Y} & =m_{2} v_{0} \tag{55}
\end{align*}
$$

and thus if we look at the motion in a frame which moves in the y-direction with velocity $v_{Y}=m_{2} v_{0} / M$ the motion will be periodic.
(e) (i) The initial conditions also excites internal oscillations and orbital motion. Similarly using a bit of geometry of we have that in the center of mass frame $\dot{\phi}=v_{0} / \ell$ and thus ϕ angular motion is determined by the angular momentum variable

$$
\begin{equation*}
p_{\phi}=\mu \ell v_{0} \tag{56}
\end{equation*}
$$

Finally the energy is constant and is determined by the initial conditions

$$
\begin{equation*}
E_{0}=\frac{1}{2} m_{2} v_{0}^{2}=\underbrace{\frac{1}{2} \frac{m_{2}^{2}}{M} v_{0}^{2}}_{\text {init translational KE }}+\underbrace{\frac{1}{2} \mu v_{0}^{2}}_{\text {init rotational KE }} . \tag{57}
\end{equation*}
$$

So setting $E=E_{0}$, we have after minor manipulations

$$
\begin{equation*}
\frac{1}{2} m_{0}(\theta) \ell^{2} \dot{\theta}^{2}+\frac{\mu v_{0}^{2}}{2 \sin ^{2} \theta}-M g \alpha \ell \cos \theta=\frac{1}{2} \mu v_{0}^{2} \tag{58}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{1}{2} m_{0}(\theta) \ell^{2} \dot{\theta}^{2}=-\frac{1}{2} \mu v_{0}^{2} \cot ^{2} \theta+M g \alpha \ell \cos \theta \tag{59}
\end{equation*}
$$

Solving for $\dot{\theta}$

$$
\begin{equation*}
\frac{d \theta}{d t}= \pm \frac{v_{0}}{\ell} \sqrt{\frac{\mu}{m_{0}(\theta)}} \sqrt{-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+u \cos \theta} \tag{60}
\end{equation*}
$$

where we have defined:

$$
\begin{equation*}
u \equiv \frac{M g \alpha \ell}{\frac{1}{2} \mu v_{0}^{2}} . \tag{61}
\end{equation*}
$$

u is a dimensionless number, which is the ratio of the initial potential to initial rotational kinetic energy. τ is a timescale set by the internal energy. Since the angle is decreasing (initially) we take the negative root for the first half period.
The turning points are when $\dot{\theta}$ is zero. Solving the equation for the turning points we have

$$
\begin{array}{ll}
\cos \theta_{0}=0 & \theta_{+}=\pi / 2, \\
\cos \theta_{-}=\frac{-1+\sqrt{1+4 u^{2}}}{2 u} & \theta_{-}<\pi / 2 .
\end{array}
$$

Finally there is an unphysical turning point when the pendulum has angle greater than $\pi / 2$.
(ii) Integrating the equation of motion Eq. (60) we find

$$
\begin{equation*}
\int_{0}^{t} d t=-\frac{\ell}{v_{0}} \int_{\pi / 2}^{\theta(t)} d \theta \sqrt{\frac{1+r \sin ^{2} \theta}{-\cot ^{2}(\theta)+u \cos (\theta)}} \tag{64}
\end{equation*}
$$

with $r \equiv m_{2} / m_{1}$. (N.B. the problem defined $r=m_{1} / m_{2}$). Here we have recognized that

$$
\begin{equation*}
\frac{m_{0}(\theta)}{\mu}=\frac{1}{\mu}\left(M \alpha^{2} \sin ^{2}(\theta)+\mu\right)=1+r \sin ^{2} \theta \tag{65}
\end{equation*}
$$

The pendulum swings down from $\theta=\pi / 2$ to $\theta=\theta_{-}$) and back. One half of the pendulum's period is spent swinging down. Thus the full period is

$$
\begin{align*}
T & =\frac{2 \ell}{v_{0}} \int_{\theta_{-}}^{\pi / 2} d \theta \sqrt{\frac{1+r \sin ^{2} \theta}{-\cot ^{2}(\theta)+u \cos (\theta)}} . \tag{66}\\
& =\frac{2 \pi \ell}{v_{0}} f(u, r) \tag{67}
\end{align*}
$$

where $f(u, r)$ is a dimensionless function of u and r
Discussion: For simplicity let us set $r=m_{2} / m_{1}=1$. At small u, gravity's potential energy is very small compared the very large kinetic energy. Then the system makes very small oscillations between $\theta=\pi / 2$ and $\theta=\pi / 2-$ tinybit. The period of oscillations can be worked out analytically in this case leading to

$$
\begin{equation*}
T=\frac{2 \pi \ell}{v_{0}} \sqrt{2} \quad u \ll 1 \tag{68}
\end{equation*}
$$

This is suggested as an exercise.

Figure 2: The period of the motion (normalized by $2 \pi \ell / v_{0}$) as a function of u (see text).

At large u the system just falls, and the angular momentum can be neglected. Dimensional analysis in this limit says that the period is proportional to $\sqrt{\ell / g}$:

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{\ell}{g}} \times \mathrm{const} \tag{69}
\end{equation*}
$$

This implies that $f(u, 1) \rightarrow$ const/ \sqrt{u} for $u \rightarrow \infty$. The integral can be done analytically in the limit that u is large, yielding

$$
\begin{equation*}
T=\frac{2 \pi \ell}{v_{0}}\left(\frac{1.07}{\sqrt{u}}\right) \quad u \gg 1 \tag{70}
\end{equation*}
$$

at large u.
Fig. 2 shows the period as a function of u, and the limits we have outlined.

[^0]: ${ }^{1}$ Edward John Routh was a physicist of some repute. He was also an outstanding educator at Cambridge.
 ${ }^{2}$ Note that the sign of R is conventional. The choice here is nice in that the Hamiltonian part of the equations (Eq. (28) and Eq. (29)) takes the form of Hamilton's equations. But then, R is minus the effective Lagrangian for the non-cyclic coordinates. We will get around this "difficulty" by presenting $-R$.

