Problem 1. Particle in an electro-magnetic field

A non-relativistic particle of charge q in a electro-magnetic field is described by the Lagrangian (try to remember this!)

$$L = \frac{1}{2}m\dot{\boldsymbol{r}}^2 - q\phi + q\frac{\dot{\boldsymbol{r}}}{c} \cdot \boldsymbol{A}$$
(1)

where $\phi(t, \mathbf{r}(t))$ is the scalar potential, and $\mathbf{A}(t, \mathbf{r}(t))$ is the vector potential of electricity and magnetisim. The electric and mangic fields are related to ϕ and \mathbf{A} through

$$\boldsymbol{B}(t,\boldsymbol{r}) = \nabla \times \boldsymbol{A} \qquad \qquad \epsilon_{ijk} B^k = \partial_i A_j - \partial_j A_i \qquad (3)$$

- (a) Show that the Euler-Lagrange equations give the expected EOM for a particle experiencing the force law: $\mathbf{F} = q(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}).$
- (b) Compute the canonical momenta p. How is this related to the so called kinetic momentum $p_{kin} = m\dot{r}$? Use part (a) to determine

$$\frac{d(\boldsymbol{p} - \frac{q}{c}\boldsymbol{A})}{dt} \tag{4}$$

(c) Determine the Hamiltonian $H(\mathbf{r}, \mathbf{p})$ and Hamiltonian function $h(\mathbf{r}, \dot{\mathbf{r}})$.

 $H(\mathbf{r}, \mathbf{p})$ and $h(\mathbf{r}, \dot{\mathbf{r}})$ return the same value (at corresponding points), but have different functional forms (meaning that they have different dependences on the arguments). A mathematician would (correctly) say that they are different functions, but we (too) loosely say that they are the "same".

(d) (Optional. Not graded) Compute $d\mathbf{p}/dt$ from the Hamiltonian formalism, and show that it leads to the somewhat unintuitive result

$$\frac{dp_i}{dt} = -q\partial_i\phi + \frac{q}{c}\dot{r}^j\partial_iA_j \tag{5}$$

Rederive Eq. (4) from Hamilton's equations of motion.

Solution:

(a) Constructing the Euler Lagrange equations

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}^i} \right) = \frac{\partial L}{\partial r^i} \tag{6}$$

$$\frac{d}{dt}\left(m\dot{r}_{i} + \frac{q}{c}A_{i}\right) = -q\partial_{i}\phi + \frac{q}{c}\dot{r}^{j}\partial_{i}A_{j}$$

$$\tag{7}$$

where we used the indexed notation, e.g.

$$\partial_i A_j = \frac{\partial}{\partial r^i} A_j(t, \boldsymbol{r}) \tag{8}$$

Then differentiating away we have

$$\frac{d}{dt}A_i = \partial_t A_i + \partial_j A_i \dot{r}^j \tag{9}$$

 So

$$\frac{d}{dt}(m\dot{r}_i) = q\left(-\partial_i\phi - \frac{1}{c}\partial_tA_i\right) + \frac{q}{c}v^j\left(\partial_iA_j - \partial_jA_i\right)$$
(10)

Recognizing the electric and magnetic fields

$$\partial_i A_j - \partial_j A_i = \epsilon_{ijk} B_k \tag{11}$$

we find

$$\frac{d}{dt}\left(m\dot{r}_{i}\right) = qE_{i} + \frac{q}{c}\epsilon_{ijk}v^{j}B^{k}$$

$$\tag{12}$$

which is the Lorentz force law ${\pmb F} = q({\pmb E} + {\pmb v}/c \times {\pmb B})$

(b) The canonical momentum is

$$p_i = \frac{\partial L}{\partial \dot{r}^i} = m\dot{r}_i + \frac{q}{c}A_i \tag{13}$$

We have $\boldsymbol{p}_i = \boldsymbol{p}_{kin} + q/c\boldsymbol{A}$. So

$$\frac{d(\boldsymbol{p} - q/c\boldsymbol{A})}{dt} = \frac{d\boldsymbol{p}_{\rm kin}}{dt} = \boldsymbol{F}$$
(14)

(c) The Lagrangian is cast in a general form discussed in class

$$L = \frac{1}{2}m\,\delta_{ij}\,\dot{r}^{i}\,\dot{r}^{j} + \frac{q}{c}\dot{r}^{i}A_{i} - q\phi(r)$$
(15)

We find from general results derived in class

$$h = \frac{1}{2}m\,\delta_{ij}\,\dot{r}^i\dot{r}^j + q\phi\tag{16}$$

The canonical momentum

$$p_i = m\dot{r}_i + \frac{q}{c}A_i \tag{17}$$

And then

$$H(\boldsymbol{p},\boldsymbol{r}) = \frac{1}{2m} \delta^{ij} (p_i - \frac{q}{c} A_i) (p_j - \frac{q}{c} A_j) + q\phi$$
(18)

$$H(\boldsymbol{p},\boldsymbol{r}) = \frac{1}{2m} (\boldsymbol{p} - \frac{q}{c}\boldsymbol{A})^2 + q\phi$$
(19)

(d) The Hamilton equations of motion give

$$\frac{dr^i}{dt} = \frac{p^i - q/cA^i}{m} \tag{20}$$

$$\frac{dp_i}{dt} = -q\partial_i\phi + \frac{q}{c}\left(\frac{p^j - q/cA^j}{m}\right)\partial_iA_j \tag{21}$$

$$= -q\partial_i\phi - \frac{q}{c}\dot{r}^j\partial_iA_j \tag{22}$$

In order to see the force law we subtract:

$$\frac{q}{c}\frac{dA_i}{dt} = \frac{q}{c}\partial_t A_i + \frac{q}{c}\partial_j A_i \dot{r}^j$$
(23)

which gives

$$\frac{d}{dt}(p_i - \frac{q}{c}A_i) = q(\boldsymbol{E} + \dot{\boldsymbol{r}}/c \times \boldsymbol{B})_i$$
(24)

Problem 2. A Routhian tutorial and the effective potential

Consider the Kepler Lagrangian again:

$$L = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\phi}^2 - U(r)$$
(25)

There are two variables r and ϕ with associated momenta p_r and p_{ϕ} . The Hamiltonian is is formed by Legendre transforming with respect to r and ϕ

$$H = p_r \dot{r} + p_\phi \dot{\phi} - L(r, \dot{r}, \phi, \dot{\phi}).$$
⁽²⁶⁾

It can be convenient to Legendre transform with respect to only some of the variables instead of all of them. We define the $Routhian^1$:

$$R(r, \dot{r}, \phi, p_{\phi}) \equiv p_{\phi} \dot{\phi} - L(r, \dot{r}, \phi, \dot{\phi}), \qquad (27)$$

which serves as a Hamiltonian for ϕ , but a Lagrangian for r. This is especially helpful when some of the coordinates are cyclic (ϕ in this case). The p_{ϕ} are then just constants (both in the equation of motion *and* in the action), and we have effectively a Lagrangian for the remaining (non-cyclic) coordinates.

(a) From the Lagrange equations of motion, show that the Routhian equations of motion (for a generic Lagrangian not just Eq. (25)) are

$$\frac{d\phi}{dt} = \frac{\partial R}{\partial p_{\phi}} \tag{28}$$

$$\frac{dp_{\phi}}{dt} = -\frac{\partial R}{\partial \phi} \tag{29}$$

$$\frac{d}{dt}\frac{\partial R}{\partial \dot{r}} = \frac{\partial R}{\partial r} \tag{30}$$

(b) Determine $R(r, \dot{r}, \phi, p_{\phi})$ for the Lagrangian in Eq. (25) and the Routhian equations of motion. You should find²

$$-R = \frac{1}{2}m\dot{r}^2 - V_{\text{eff}}(r, p_{\phi})$$
(31)

where $V_{\text{eff}}(r, p_{\phi})$ was defined in class and the equation of motions are

$$m\ddot{r} = -\frac{\partial V_{\text{eff}}(r, p_{\phi})}{\partial r}$$
(32)

$$p_{\phi} = \text{const}$$
 (33)

Now might be a good time to review the appropriate comments on bottom of pg.2 and 3 in lecture to appreciate the how the Routhian can help, i.e. we want $(\partial V_{\text{eff}}/\partial r)_{p_{\phi}}$.

¹Edward John Routh was a physicist of some repute. He was also an outstanding educator at Cambridge. ²Note that the sign of R is conventional. The choice here is nice in that the Hamiltonian part of the equations (Eq. (28) and Eq. (29)) takes the form of Hamilton's equations. But then, R is minus the effective Lagrangian for the non-cyclic coordinates. We will get around this "difficulty" by presenting -R.

- (c) A particle of mass m is confined to move on the surface of a sphere. It moves freely on the surface but experiences the acceleration of gravity g:
 - (i) Write down the Lagrangian for this system using the spherical angular variables θ, ϕ .
 - (ii) Form the Routhian for this system by Legendre transforming with respect to the cyclic coordinate.
 - (iii) Sketch the effective potential of θ for p_{ϕ} small and large, after defining what large and small means. Determine the stationary point of θ at large p_{ϕ} , and briefly describe the result physically.

Routhian tutorial

$$AL = p\phi d\phi + \partial L d\phi + other
 $\partial \phi = dL = p\phi d\phi + \partial L d\phi + other$

$$BR = d(p\phi\phi - L)$$

$$= \phi dp\phi + p\phi d\phi - dL$$

$$= \phi dp\phi - \partial L d\phi - other spectators
 $\partial \phi$

$$So = \partial R = \phi$$

$$= \phi$$

$$AR = -\partial L$$

$$A\Phi = -\partial L$$

$$AR = -\partial L$$$$$$

• The remaining variables are spectators

$$\frac{\partial R}{\partial r} = \frac{\partial L}{\partial r} = \frac{\partial R}{\partial r} = -\frac{\partial L}{\partial r}$$
So from the Euler Lagrange EOM read

$$\frac{-a}{dr} = \frac{\partial R}{\partial r} = -\frac{\partial R}{dr}$$

$$\frac{dr}{dr} = \frac{\partial R}{\partial r} = -\frac{\partial R}{dr}$$

$$\frac{dr}{dr} = \frac{\partial R}{\partial r} = -\frac{\partial R}{dr}$$

$$\frac{dr}{dr} = \frac{\partial R}{dr} = -\frac{\partial R}{dr}$$

$$\frac{dr}{dr} = -\frac{\partial R}{dr}$$

Then first we need coordinates

$$x = a \sin \theta \cos \phi$$

$$y = a \sin \theta \sin \phi$$

$$\frac{2}{2} = -a \cos \theta$$
• So straightforward algebra or geometry
gives

$$T = 1mx^{2} + 1my^{2} + 1mz^{2}$$

$$2 \qquad 2$$

$$= 1ma^{2} (\dot{\theta}^{2} + \sin^{2}\theta \dot{\Phi}^{2})$$

$$2$$
And since $u = tmg^{2}$ and $L = T - U$
we have
(i) $L = 1ma^{2} (\dot{\theta}^{2} + \sin^{2}\theta \dot{\Phi}^{2}) + mga \cos \theta$

$$2$$
(i) The ϕ coordinate is clyclic

$$P\phi = ma^{2} \sin^{2}\theta \dot{\phi} = angular momentum in the 2 direction$$

The Routhian is $-R = L - p \phi \phi$ $-R = 1 \operatorname{ma}^{2} \widehat{\Theta}^{2} - \left(\frac{P\widehat{\Phi}}{2\operatorname{ma}^{2}\operatorname{sin}^{2}\Theta} - \operatorname{mga}^{2}\operatorname{cos}\Theta\right)$ Veff ίί Then $V_{eff} = P \vec{\phi} - mg a \cos \theta$ 2ma²sin²O So pp is small when <u>Pé</u> «mga and large when the equality is reversed At · Small pd, the Veff potential is only modified at 0=0, TM 0=0 0=TT

• For Large
$$p_{4}$$
 the potential Scarrely modifies
the centrifugal barries
• vert expand vert near T_{12}
• vert mining
 $\Theta = 0$ $\Theta = T$
• The minimum of V(Θ) determines the stationary
point. Near $\Theta = T_{12}$ we expand $g = \Theta - T_{12}$
1. $2 + S^{2}$
 $sin^{2}\Theta - (1 - S^{2}/2)^{2}$
-cos $\Theta \approx S$
So prear $\Theta = T_{12}$:
• Vert = $P_{4}^{2} \phi (1 + S^{2}) + mgaS$, with minimum
 $2ma^{2}$ when

· So the stationary point is just below Th/2 $S = -mg\left(\frac{ma^3}{p_d^2}\right)$ So in the limit pp → ∞ the bead
is equal so for is going around so fast it is pushed by +he centrifugal force to 0=Tr/2. But then gravity sets in decreasing the angle slightly. The deficit from T/2 is the ratio of the gravitational force to the (Large) centrifugal force.

Problem 3. A sliding conical pendulum

Consider two beads connected by a light rod of length ℓ . The first bead has mass m_1 and is constrained to lie in the x, y plane, but may move freely in this plane. The second bead has mass m_2 and can move freely in all three dimensions, and can pass freely through the x, y plane. The system sits in the earths gravitational field $\mathbf{g} = -g \hat{\mathbf{z}}$.

(a) Determine the distance from m_1 to the center of mass. You should find

$$\ell_{\rm cm} = \alpha \ell, \qquad \alpha \equiv \frac{m_2}{M}, \qquad M \equiv (m_1 + m_2), \qquad (34)$$

which establishes some notation used below.

(b) Clearly define some appropriate generalized coordinates for the system, and write down the Lagrangian of the system in terms of these coordinates.

Hint: The cartesian coordinates (X, Y, Z) of the center of mass is an excellent choice. Then I used the the spherical coordinates θ and ϕ to orient the rod relative to the center of mass. I find the Lagrangian takes the form

$$L = \frac{1}{2}M(\dot{X}^2 + \dot{Y}^2) + \frac{1}{2}m_0(\theta)\ell^2\dot{\theta}^2 + \frac{1}{2}\mu\ell^2\sin^2\theta\dot{\phi}^2 + Mg\alpha\ell\cos\theta$$
(35)

where $m_0 = M\alpha^2 \sin^2 \theta + \mu$ and $\mu = m_1 m_2/M$ is the reduced mass.

(c) Identify all integrals of the motion.

Now consider the case where the first bead is initially at rest and the second bead initially has velocity v_0 in the x, y plane, and perpendicular to the rod, before beginning to fall (see below).

Figure 1: The period of the motion (normalized by $2\pi\ell/v_0$) as a function of u (see text).

- (d) Describe qualitatively the subsequent motion of the system. In what Galilean frame is the motion periodic? Explain.
- (e) (i) The pendulum swings down from an initial angle of π/2 relative to the vertical to a minimum angle. Determine this minimum angle.
 You should find

$$\cos \theta_{-} = \frac{-1 + \sqrt{1 + 4u^2}}{2u} \qquad \qquad \theta_{-} < \pi/2.$$
 (36)

where $u = Mg\alpha \ell / \frac{1}{2}\mu v_0^2$.

(ii) Determine the associated period of the motion as a definite integral. Define what is meant by large and small v_0 and describe the motion qualitatively in these two limits.

You should show that this period takes the form

$$\mathcal{T} = \tau_0 f(u, m_1/m_2) \tag{37}$$

where $\tau_0 \equiv \ell/v_0$ and f(u, r) is a dimensionless function of u and the ratio of masses $r = m_1/m_2$. Use mathematica to plot to make a plot of $\mathcal{T}/(2\pi\tau_0)$ for $m_1 = m_2$, which is exhibited above.

Solution

(a) From the picture, the center of mass is a distance $m_2 \ell/M \equiv \alpha \ell$ from the first particle m_1 which is attached to the plane.

(b) It makes sense to use center of mass coordinates. Let us denote $M = m_1 + m_2$ as the total mass. The center of mass is mass coordinate $\mathbf{R} = (X, Y, Z)$

$$\boldsymbol{R} = \frac{m_1}{M} \boldsymbol{r}_1 + \frac{m_2}{M} \boldsymbol{r}_2 \,. \tag{38}$$

The relative coordinate is $\boldsymbol{r} = (x, y, z)$ is

$$\boldsymbol{r} = \boldsymbol{r}_1 - \boldsymbol{r}_2 \,, \tag{39}$$

and the reduced mass is $\mu = m_1 m_2 / (m_1 + m_2)$. The kinetic energy is

$$T = \frac{1}{2}M\dot{R}^2 + \frac{1}{2}\mu\dot{r}^2.$$
 (40)

The vector \boldsymbol{r} has a fixed length and is conveniently parameterized by two angles

$$x = \ell \sin(\theta) \cos \phi \,, \tag{41}$$

$$y = \ell \sin(\theta) \sin \phi \,, \tag{42}$$

$$z = \ell \cos(\theta) \,. \tag{43}$$

Now the angle θ is related to the height of the center of mass. From the picture, the center of mass is a distance $m_2 \ell/M \equiv \alpha \ell$ from the first particle m_1 which is attached to the plane. We have from geometry

$$Z = -\alpha \ell \cos \theta \,. \tag{44}$$

Thus

$$\dot{Z} = \alpha \ell \sin \theta \, \dot{\theta} \,, \tag{45}$$

and then the kinetic energy is

$$T = \frac{1}{2}M(\dot{X}^2 + \dot{Y}^2 + \alpha^2\ell^2\sin^2(\theta)\dot{\theta}^2) + \frac{1}{2}\mu\ell^2(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2).$$
(46)

The potential energy is U = MgZ. Thus the full Lagrangian is

$$L = \frac{1}{2}M(\dot{X}^2 + \dot{Y}^2 + \alpha^2\ell^2\sin^2\theta\dot{\theta}^2) + \frac{1}{2}\mu\ell^2(\dot{\theta}^2 + \sin^2\theta\dot{\phi}^2) + Mg\alpha\ell\cos\theta.$$
(47)

Since two of the terms are very similar, we define

$$m_0(\theta) = M\alpha^2 \sin^2 \theta + \mu \,, \tag{48}$$

leading to our final result

$$L = \frac{1}{2}M(\dot{X}^2 + \dot{Y}^2) + \frac{1}{2}m_0(\theta)\ell^2\dot{\theta}^2 + \frac{1}{2}\mu\ell^2\sin^2\theta\dot{\phi}^2 + Mg\alpha\ell\cos\theta.$$
(49)

(c) The are several cyclic coordinates owing to the symmetries of the problem. First there is the total momentum of the system

$$p_X = \frac{\partial L}{\partial \dot{X}} = M \dot{X} \,, \tag{50}$$

$$p_Y = \frac{\partial L}{\partial \dot{Y}} = M \dot{Y} \,. \tag{51}$$

Then there is the angular momentum around the Z axis.

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = \mu \ell^2 \sin^2 \theta \dot{\phi} \,. \tag{52}$$

Finally there is the total energy of the system

$$E = \frac{p_X^2}{2M} + \frac{p_Y^2}{2m} + \frac{1}{2}m_0(\theta)\ell^2\dot{\theta}^2 + \frac{p_{\phi}^2}{2\mu\ell^2\sin^2(\theta)} - Mg\alpha\ell\cos\theta.$$
 (53)

(d) In a frame which moves with the center of mass the motion will be periodic. The initial momenta are $p_1^y = 0$ and $p_2^y = m_2 v_0$ and

$$p_X = 0, \tag{54}$$

$$p_Y = m_2 v_0 \,, \tag{55}$$

and thus if we look at the motion in a frame which moves in the y-direction with velocity $v_Y = m_2 v_0/M$ the motion will be periodic.

(e) (i) The initial conditions also excites internal oscillations and orbital motion. Similarly using a bit of geometry of we have that in the center of mass frame $\dot{\phi} = v_0/\ell$ and thus ϕ angular motion is determined by the angular momentum variable

$$p_{\phi} = \mu \ell v_0 \,. \tag{56}$$

Finally the energy is constant and is determined by the initial conditions

$$E_0 = \frac{1}{2}m_2v_0^2 = \frac{1}{2}\frac{m_2^2}{M}v_0^2 + \frac{1}{2}\mu v_0^2 \qquad . \tag{57}$$

init translational KE init rotational KE

So setting $E = E_0$, we have after minor manipulations

$$\frac{1}{2}m_0(\theta)\ell^2\dot{\theta}^2 + \frac{\mu v_0^2}{2\sin^2\theta} - Mg\alpha\ell\cos\theta = \frac{1}{2}\mu v_0^2.$$
(58)

Then we have

$$\frac{1}{2}m_0(\theta)\ell^2\dot{\theta}^2 = -\frac{1}{2}\mu v_0^2\cot^2\theta + Mg\alpha\ell\cos\theta.$$
(59)

Solving for $\dot{\theta}$

$$\frac{d\theta}{dt} = \pm \frac{v_0}{\ell} \sqrt{\frac{\mu}{m_0(\theta)}} \sqrt{-\frac{\cos^2\theta}{\sin^2\theta} + u\cos\theta}, \qquad (60)$$

where we have defined:

$$u \equiv \frac{Mg\alpha\ell}{\frac{1}{2}\mu v_0^2} \,. \tag{61}$$

u is a dimensionless number, which is the ratio of the initial potential to initial rotational kinetic energy. τ is a timescale set by the internal energy. Since the angle is decreasing (initially) we take the negative root for the first half period.

The turning points are when $\dot{\theta}$ is zero. Solving the equation for the turning points we have

$$\cos\theta_0 = 0 \qquad \qquad \theta_+ = \pi/2 \,, \tag{62}$$

$$\cos \theta_{-} = \frac{-1 + \sqrt{1 + 4u^2}}{2u} \qquad \qquad \theta_{-} < \pi/2.$$
(63)

Finally there is an unphysical turning point when the pendulum has angle greater than $\pi/2$.

(ii) Integrating the equation of motion Eq. (60) we find

$$\int_0^t dt = -\frac{\ell}{v_0} \int_{\pi/2}^{\theta(t)} d\theta \sqrt{\frac{1+r\sin^2\theta}{-\cot^2(\theta)+u\cos(\theta)}},$$
(64)

with $r \equiv m_2/m_1$. (N.B. the problem defined $r = m_1/m_2$). Here we have recognized that

$$\frac{m_0(\theta)}{\mu} = \frac{1}{\mu} \left(M \alpha^2 \sin^2(\theta) + \mu \right) = 1 + r \sin^2 \theta \,. \tag{65}$$

The pendulum swings down from $\theta = \pi/2$ to $\theta = \theta_{-}$) and back. One half of the pendulum's period is spent swinging down. Thus the full period is

$$T = \frac{2\ell}{v_0} \int_{\theta_-}^{\pi/2} d\theta \sqrt{\frac{1 + r\sin^2\theta}{-\cot^2(\theta) + u\cos(\theta)}}.$$
 (66)

$$=\frac{2\pi\ell}{v_0}f(u,r)\tag{67}$$

where f(u, r) is a dimensionless function of u and r

Discussion: For simplicity let us set $r = m_2/m_1 = 1$. At small u, gravity's potential energy is very small compared the very large kinetic energy. Then the system makes very small oscillations between $\theta = \pi/2$ and $\theta = \pi/2$ -tinybit. The period of oscillations can be worked out analytically in this case leading to

$$T = \frac{2\pi\ell}{v_0}\sqrt{2} \qquad u \ll 1 \tag{68}$$

This is suggested as an exercise.

Figure 2: The period of the motion (normalized by $2\pi\ell/v_0$) as a function of u (see text).

At large u the system just falls, and the angular momentum can be neglected. Dimensional analysis in this limit says that the period is proportional to $\sqrt{\ell/g}$:

$$T = 2\pi \sqrt{\frac{\ell}{g}} \times \text{const}$$
(69)

This implies that $f(u, 1) \to \operatorname{const}/\sqrt{u}$ for $u \to \infty$. The integral can be done analytically in the limit that u is large, yielding

$$T = \frac{2\pi\ell}{v_0} \left(\frac{1.07}{\sqrt{u}}\right) \qquad u \gg 1 \tag{70}$$

at large u.

Fig. 2 shows the period as a function of u, and the limits we have outlined.