
Problem 1. Particle in an electro-magnetic field

A non-relativistic particle of charge q in a electro-magnetic field is described by the La-
grangian (try to remember this!)

L =
1

2
mṙ2 − qφ+ q

ṙ

c
·A (1)

where φ(t, r(t)) is the scalar potential, and A(t, r(t)) is the vector potential of electricity
and magnetisim. The electric and mangic fields are related to φ and A through

E(t, r) =−∇φ− 1

c
∂tA Ei =− ∂iφ−

1

c
∂tAi (2)

B(t, r) =∇×A εijkB
k =∂iAj − ∂jAi (3)

(a) Show that the Euler-Lagrange equations give the expected EOM for a particle experi-
encing the force law: F = q(E + v

c
×B).

(b) Compute the canonical momementa p. How is this related to the so called kinetic
momentum pkin = mṙ? Use part (a) to determine

d(p− q
c
A)

dt
(4)

(c) Determine the Hamiltonian H(r,p) and Hamiltonian function h(r, ṙ).

H(r,p) and h(r, ṙ) return the same value (at corresponding points), but have different
functional forms (meaning that they have different dependences on the arguements).
A mathematician would (correctly) say that they are different functions, but we (too)
loosely say that they are the “same”.

(d) (Optional. Not graded) Compute dp/dt from the Hamiltonian formalism, and show
that it leads to the somewhat unintuitive result

dpi
dt

= −q∂iφ+
q

c
ṙj∂iAj (5)

Rederive Eq. (4) from Hamilton’s equations of motion.
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Solution:

(a) Constructing the Euler Lagrange equations

d

dt

(
∂L

∂ṙi

)
=
∂L

∂ri
(6)

d

dt

(
mṙi +

q

c
Ai

)
=− q∂iφ+

q

c
ṙj ∂iAj (7)

where we used the indexed notation, e.g.

∂iAj =
∂

∂ri
Aj(t, r) (8)

Then differentiating away we have

d

dt
Ai = ∂tAi + ∂jAi ṙ

j (9)

So

d

dt
(mṙi) =q

(
−∂iφ−

1

c
∂tAi

)
+
q

c
vj (∂iAj − ∂jAi) (10)

Recognizing the electric and magnetic fields

∂iAj − ∂jAi = εijkBk (11)

we find

d

dt
(mṙi) =qEi +

q

c
εijkv

jBk (12)

which is the Lorentz force law F = q(E + v/c×B)

(b) The canonical momentum is

pi =
∂L

∂ṙi
= mṙi +

q

c
Ai (13)

We have pi = pkin + q/cA. So

d(p− q/cA)

dt
=
dpkin

dt
= F (14)

(c) The Lagrangian is cast in a general form discussed in class

L =
1

2
mδij ṙ

i ṙj +
q

c
ṙiAi − qφ(r) (15)
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We find from general results derived in class

h =
1

2
mδij ṙ

iṙj + qφ (16)

The canonical momentum
pi = mṙi +

q

c
Ai (17)

And then

H(p, r) =
1

2m
δij(pi −

q

c
Ai)(pj −

q

c
Aj) + qφ (18)

H(p, r) =
1

2m
(p− q

c
A)2 + qφ (19)

(d) The Hamilton equations of motion give

dri

dt
=
pi − q/cAi

m
(20)

dpi
dt

=− q∂iφ+
q

c

(
pj − q/cAj

m

)
∂iAj (21)

=− q∂iφ−
q

c
ṙj ∂iAj (22)

In order to see the force law we subtract:

q

c

dAi
dt

=
q

c
∂tAi +

q

c
∂jAiṙ

j (23)

which gives
d

dt
(pi −

q

c
Ai) = q(E + ṙ/c×B)i (24)
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Problem 2. A Routhian tutorial and the effective potential

Consider the Kepler Lagrangian again:

L =
1

2
mṙ2 +

1

2
mr2φ̇2 − U(r) (25)

There are two variables r and φ with associated momenta pr and pφ. The Hamiltonian is is
formed by Legendre transforming with respect to r and φ

H = prṙ + pφφ̇− L(r, ṙ, φ, φ̇) . (26)

It can be convenient to Legendre transform with respect to only some of the variables instead
of all of them. We define the Routhian1:

R(r, ṙ, φ, pφ) ≡ pφφ̇− L(r, ṙ, φ, φ̇) , (27)

which serves as a Hamiltonian for φ, but a Lagrangian for r. This is especially helpful when
some of the coordinates are cyclic (φ in this case). The pφ are then just constants (both
in the equation of motion and in the action), and we have effectively a Lagrangian for the
remaining (non-cyclic) coordinates.

(a) From the Lagrange equations of motion, show that the Routhian equations of motion
(for a generic Lagrangian not just Eq. (25)) are

dφ

dt
=
∂R

∂pφ
(28)

dpφ
dt

=− ∂R

∂φ
(29)

d

dt

∂R

∂ṙ
=
∂R

∂r
(30)

(b) Determine R(r, ṙ, φ, pφ) for the Lagrangian in Eq. (25) and the Routhian equations of
motion. You should find2

−R =
1

2
mṙ2 − Veff(r, pφ) (31)

where Veff(r, pφ) was defined in class and the equation of motions are

mr̈ =− ∂Veff(r, pφ)

∂r
(32)

pφ =const (33)

Now might be a good time to review the appropriate comments on bottom of pg.2 and
3 in lecture to appreciate the how the Routhian can help, i.e. we want (∂Veff/∂r)pφ .

1Edward John Routh was a physicist of some repute. He was also an outstanding educator at Cambridge.
2Note that the sign of R is conventional. The choice here is nice in that the Hamiltonian part of the

equations (Eq. (28) and Eq. (29)) takes the form of Hamilton’s equations. But then, R is minus the effective
Lagrangian for the non-cyclic coordinates. We will get around this “difficulty” by presenting −R.
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(c) A particle of mass m is confined to move on the surface of a sphere. It moves freely
on the surface but experiences the acceleration of gravity g:

(i) Write down the Lagrangian for this system using the spherical angular variables
θ, φ.

(ii) Form the Routhian for this system by Legendre transforming with respect to the
cyclic coordinate.

(iii) Sketch the effective potential of θ for pφ small and large, after defining what large
and small means. Determine the stationary point of θ at large pφ, and briefly
describe the result physically.
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Problem 3. A sliding conical pendulum

Consider two beads connected by a light rod of length `. The first bead has mass m1 and is
constrained to lie in the x, y plane, but may move freely in this plane. The second bead has
mass m2 and can move freely in all three dimensions, and can pass freely through the x, y
plane. The system sits in the earths gravitational field g = −g ẑ.

m2

m1

v1

v2

(a) Determine the distance from m1 to the center of mass. You should find

`cm = α`, α ≡ m2

M
, M ≡ (m1 +m2) , (34)

which establishes some notation used below.

(b) Clearly define some appropriate generalized coordinates for the system, and write down
the Lagrangian of the system in terms of these coordinates.

Hint: The cartesian coordinates (X, Y, Z) of the center of mass is an excellent choice.
Then I used the the spherical coordinates θ and φ to orient the rod relative to the
center of mass. I find the Lagrangian takes the form

L =
1

2
M(Ẋ2 + Ẏ 2) +

1

2
m0(θ)`2θ̇2 + +

1

2
µ`2 sin2 θφ̇2 +Mgα` cos θ (35)

where m0 = Mα2 sin2 θ + µ and µ = m1m2/M is the reduced mass.

(c) Identify all integrals of the motion.

Now consider the case where the first bead is initially at rest and the second bead initially
has velocity v0 in the x, y plane, and perpendicular to the rod, before beginning to fall (see
below).

v0
m1 m2
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Figure 1: The period of the motion (normalized by 2π`/v0) as a function of u (see text).

(d) Describe qualitatively the subsequent motion of the system. In what Galilean frame is
the motion periodic? Explain.

(e) (i) The pendulum swings down from an initial angle of π/2 relative to the vertical
to a minimum angle. Determine this minimum angle.

You should find

cos θ− =
−1 +

√
1 + 4u2

2u
θ− <π/2 . (36)

where u = Mgα`/1
2
µv2

0.

(ii) Determine the associated period of the motion as a definite integral. Define what
is meant by large and small v0 and describe the motion qualitatively in these two
limits.

You should show that this period takes the form

T = τ0 f(u,m1/m2) (37)

where τ0 ≡ `/v0 and f(u, r) is a dimensionless function of u and the ratio of
masses r = m1/m2. Use mathematica to plot to make a plot of T /(2πτ0) for
m1 = m2, which is exhibited above.
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Solution

(a) From the picture, the center of mass is a distance m2`/M ≡ α` from the first particle
m1 which is attached to the plane.

(b) It makes sense to use center of mass coordinates. Let us denote M = m1 + m2 as the
total mass. The center of mass is mass coordinate R = (X, Y, Z)

R =
m1

M
r1 +

m2

M
r2 . (38)

The relative coordinate is r = (x, y, z) is

r = r1 − r2 , (39)

and the reduced mass is µ = m1m2/(m1 +m2). The kinetic energy is

T =
1

2
MṘ2 +

1

2
µṙ2 . (40)

The vector r has a fixed length and is conveniently parameterized by two angles

x =` sin(θ) cosφ , (41)

y =` sin(θ) sinφ , (42)

z =` cos(θ) . (43)

Now the angle θ is related to the height of the center of mass. From the picture, the center
of mass is a distance m2`/M ≡ α` from the first particle m1 which is attached to the plane.
We have from geometry

Z = −α` cos θ . (44)

Thus
Ż = α` sin θ θ̇ , (45)

and then the kinetic energy is

T =
1

2
M(Ẋ2 + Ẏ 2 + α2`2 sin2(θ)θ̇2) +

1

2
µ`2(θ̇2 + sin2 θφ̇2) . (46)

The potential energy is U = MgZ. Thus the full Lagrangian is

L =
1

2
M(Ẋ2 + Ẏ 2 + α2`2 sin2 θθ̇2) +

1

2
µ`2(θ̇2 + sin2 θφ̇2) +Mgα` cos θ . (47)

Since two of the terms are very similar, we define

m0(θ) = Mα2 sin2 θ + µ , (48)

leading to our final result

L =
1

2
M(Ẋ2 + Ẏ 2) +

1

2
m0(θ)`2θ̇2 +

1

2
µ`2 sin2 θφ̇2 +Mgα` cos θ . (49)
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(c) The are several cyclic coordinates owing to the symmetries of the problem.First there is
the total momentum of the system

pX =
∂L

∂Ẋ
= MẊ , (50)

pY =
∂L

∂Ẏ
= MẎ . (51)

Then there is the angular momentum around the Z axis.

pφ =
∂L

∂φ̇
= µ`2 sin2 θφ̇ . (52)

Finally there is the total energy of the system

E =
p2
X

2M
+
p2
Y

2m
+

1

2
m0(θ)`2θ̇2 +

p2
φ

2µ`2 sin2(θ)
−Mgα` cos θ . (53)

(d) In a frame which moves with the center of mass the motion will be periodic. The initial
momenta are py1 = 0 and py2 = m2v0 and

pX =0 , (54)

pY =m2v0 , (55)

and thus if we look at the motion in a frame which moves in the y-direction with velocity
vY = m2v0/M the motion will be periodic.

(e) (i) The initial conditions also excites internal oscillations and orbital motion. Similarly
using a bit of geometry of we have that in the center of mass frame φ̇ = v0/` and thus
φ angular motion is determined by the angular momentum variable

pφ = µ`v0 . (56)

Finally the energy is constant and is determined by the initial conditions

E0 =
1

2
m2v

2
0 =

1

2

m2
2

M
v2

0︸ ︷︷ ︸
init translational KE

+
1

2
µv2

0︸ ︷︷ ︸
init rotational KE

. (57)

So setting E = E0, we have after minor manipulations

1

2
m0(θ)`2θ̇2 +

µv2
0

2 sin2 θ
−Mgα` cos θ =

1

2
µv2

0 . (58)

Then we have
1

2
m0(θ)`2θ̇2 = −1

2
µv2

0 cot2 θ +Mgα` cos θ . (59)

Solving for θ̇

dθ

dt
= ±v0

`

√
µ

m0(θ)

√
−cos2 θ

sin2 θ
+ u cos θ , (60)
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where we have defined:

u ≡Mgα`
1
2
µv2

0

. (61)

u is a dimensionless number, which is the ratio of the initial potential to initial rotational
kinetic energy. τ is a timescale set by the internal energy. Since the angle is decreasing
(initially) we take the negative root for the first half period.

The turning points are when θ̇ is zero. Solving the equation for the turning points we
have

cos θ0 =0 θ+ =π/2 , (62)

cos θ− =
−1 +

√
1 + 4u2

2u
θ− <π/2 . (63)

Finally there is an unphysical turning point when the pendulum has angle greater than
π/2.

(ii) Integrating the equation of motion Eq. (60) we find

∫ t

0

dt = − `

v0

∫ θ(t)

π/2

dθ

√
1 + r sin2 θ

− cot2(θ) + u cos(θ)
, (64)

with r ≡ m2/m1. (N.B. the problem defined r = m1/m2). Here we have recognized
that

m0(θ)

µ
=

1

µ

(
Mα2 sin2(θ) + µ

)
= 1 + r sin2 θ . (65)

The pendulum swings down from θ=π/2 to θ=θ−) and back. One half of the pendulum’s
period is spent swinging down. Thus the full period is

T =
2`

v0

∫ π/2

θ−

dθ

√
1 + r sin2 θ

− cot2(θ) + u cos(θ)
. (66)

=
2π`

v0

f(u, r) (67)

where f(u, r) is a dimensionless function of u and r

Discussion: For simplicity let us set r = m2/m1 = 1. At small u, gravity’s potential
energy is very small compared the very large kinetic energy. Then the system makes
very small oscillations between θ = π/2 and θ = π/2−tinybit. The period of oscillations
can be worked out analytically in this case leading to

T =
2π`

v0

√
2 u� 1 (68)

This is suggested as an exercise.
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Figure 2: The period of the motion (normalized by 2π`/v0) as a function of u (see text).

At large u the system just falls, and the angular momentum can be neglected. Dimen-
sional analysis in this limit says that the period is proportional to

√
`/g:

T = 2π

√
`

g
× const (69)

This implies that f(u, 1)→ const/
√
u for u→∞. The integral can be done analytically

in the limit that u is large, yielding

T =
2π`

v0

(
1.07√
u

)
u� 1 (70)

at large u.

Fig. 2 shows the period as a function of u, and the limits we have outlined.
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