
Problem 1. The precession of Mercury due to Jupiter

Recall that the trajectory of Mercury r(φ) is an ellipse with the sun at one focus as shown
below. The perihelion (defined as the distance of closest approach) is rotated relative to the
x-axis by an angle θ. The lattice rectum of Merucury is denoted RM and is related to the
angular momentum ` of the system (as discussed in class) but independent of the energy at
fixed `. The eccentricity of Mercury is small, ε = 0.2, although it is the most eccentric of
the Sun’s planets.
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Due to perturbations from the other planets, the angle of the perihelion θ changes (or
precesses) as function of time. The precession rate is very small. The contribution of Jupiter
to the precession rate is of order 150 arcsec/century, or (since the orbital period of Mercury
is 88 days) approximately 1.78× 10−6 rad/turn.

The goal of this problem is to estimate Jupiter’s contribution to the precession rate1.
Specifically, we will model Jupiter as a thin ring of mass MJ at the orbital radius of Jupiter
RJ , and compute how this ring perturbs Mercury’s orbit and causes the perihelion of Mercury
to precess. Jupiter’s orbital radius is significantly larger than Mercury’s, RJ ' 10RM .

(a) (Optional) Show that for RJ � RM the Lagrangian of Mercury interacting with the
sun of mass M�, and a ring of mass MJ and radius RJ is approximately

L ' 1

2
mṙ2 +

1

2
mr2φ̇2 +

GmM�

r
+ αr2 , (1)

with α = GmMJ/(4R
3
J).

Hint: Let the origin be at the center of the ring. Let r be the vector from the center of
the ring to a point of interest (i.e. Mercury) close to the center. For simplicity assume

1Famously, general relativity also perturbs the classical orbit and contributes 43 arcsecs/century to
the total precession rate. This “anomalous” precession of Mercury was measured in the nineteenth cen-
tury by le Verrier and finally explained by Einstein in 1915. The total precession rate is approximately
550 arcsec/century

1



that r lies in the xy plane. Then we want to integrate the Newton gravitational poten-
tial dΦ = −GdMJ/|r −RJ | over the mass of the ring to determine the gravitational
potential due to the ring at point r.

To this end, let RJ is a vector from the center to a point on the ring. Show that for
r � RJ

1

|r −RJ |
' 1

RJ

(
1 +

r

RJ

cos(φ) +
r2

2R2
J

(
3 cos2 φ− 1

))
(2)

where cosφ is the angle between r and RJ , and then integrate over φ.

(b) The orbit of mercury is characterized by its angular momentum `. Since the unit of
mass, time, and space are arbitrary we can (effectively) set three parameters to unity.
Let us choose these three parameters to be `, m, k ≡ GM�m. Then all other scales
are measured in these units.

(i) Construct a unit of length, R0, time, T0, and energy, E0, with `, m and k

(ii) Introduce a dimensionless radius r ≡ r/R0 and other suitable dimensionless vari-
ables, i.e. t ≡ t/T0 etc. Show that a dimensionless Lagrangian for the system
is

L =
1

2

(
dr

dt

)2

+
1

2
r2

(
dφ

dt

)2

+
1

r
+ α r2 , L =

L

E0

, (3)

where the dimensionless constant α is of order

α ≡ MJ

4M�

(
RM

RJ

)3

' 0.1× 10−6 . (4)

The dimensional analysis step amounts to setting ` = m = GM�m = 1 every-
where in the original Lagrangian. We actually gained a little something by this
analysis, i.e. without doing any computation we learned that the effect of the
perturbing ring is of order one part in 107.

To lighten the notation, stop underlining the variables in what follows.

(iii) Show that the equations of motion for the dimensionless r and φ

r̈ =− ∂Veff

∂r
, (5)

φ̇ =
1

r2
, (6)

with the dimensionless effective potential is Veff(r) = 1/(2r2)− 1/r − αr2.

Recall from class that the eccentricity of the ellipse (α = 0) is

e =
√

1 + E/|Emin| (7)

with Emin = `2/(2mk). For the real “Mercurial” orbit the energy difference ε ≡ E −Emin =
e2|Emin| ' 0.04 |Emin| is small, and the orbit is nearly circular up to small oscillations of
around the minimum of the effective potential. We will use an almost circular approximation
for α 6= 0, and evaluate the precession of the perihelion. Technically this involves expanding
the effective potential Veff(r) around its (α dependent) minimum keeping terms linear in α.
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(c) Determine the radius rmin(α) for the circular orbit to first order in α. I find rmin(α) '
1 + 2α.

(d) Determine the period of radial oscillations for slight disturbances from this circular
orbit of the previous part to first order in α. I find

τM ' 2π(1 + 7α) (8)

(e) Show that the angle of perihelion of the ellipse θ will advance by an angle ∆θ = 6πα
(see picture above), every time the particle reaches the distance of closest approach.

Restoring units we find

∆θ = 6πα =
3π

2

MJ

M�

(
RM

RJ

)3

' 1.88× 10−6 rad per turn , (9)

This should be compared to the experimental result of 1.78× 10−6rad/turn.
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Problem 2. A scattering cross section

A particle of mass µ moves in the repulsive 1/r2 potential

U(r) =
h

r2
, h > 0 .

(a) Find equation for a generic trajectory r(φ) characterized with energy E and angular
momentum ` 6= 0. Follow the convention that the direction φ = 0 points to the
pericenter (point of closest approach).

(b) Find the time dependence on this trajectory, taking the time t = 0 at the pericenter.

(c) Find the differential scattering cross section dσ(θ)
dΩ

for a particle with energy E in this
potential.
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Problem 3. (Goldstein) A hoop on a cylinder

(a) First consider a small block of mass m on a cylinder of radius R on earth. If the block
starts from rest on top of the cylinder, determine at what angle θ the block falls off
the cylinder using the Lagrangian formalism to impose the constraint r = R.

the coordinates are r, ✓

(b) Now consider a hoop of mass m and radius r0 rolls without slipping on a fixed cylinder
of radius R as shown in the figure. The only external force is that of gravity. If
the cylinder starts rolling from rest on top of the bigger cylinder, use the method of
Lagrange multipliers to find the point at which the hoop falls off the cylinder. You
should find θ = 60o

(i) Setup some coordinates. I took those based on the picture below. Determine the
relaxation between the X and Y coordinates of a point on the rim of the hoop in
terms of r, θ, ψ.
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An alternate choice of coordinates is to take an angle φ measured to the angle
angle θ as shown below. You may wish to use the coordinates r, θ, φ, i.e. ψ = θ+φ

✓
r

r0

(ii) Starting with the general expression

T =
1

2

∫
dmv2 (10)

show that the kinetic energy is of the hoop is

T =
1

2
mr2θ̇2 +

1

2
mṙ2 +

1

2
mr2

0ψ̇
2 (11)

In the alternate coordinates it reads

T =
1

2
mr2θ̇2 +

1

2
mṙ2 +

1

2
mr2

0(θ̇ + φ̇)2 (12)

(iii) Determine a relation between dθ and dψ if the hoop rolls without slipping. It
may be easier to formulate a relation between dθ and dφ.

(iv) Introducing a Lagrange multiplier for r to enforce the constraint (like in part
a), and find the angle where the hoop falls off the cylinder. You should find
θfall−off = 60o
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