
Solution:

(a) The potential from a ring of mass of density ρ(ro) is found from the Coulomb law like
integral

Φ(r) = −
∫

ring

d3ro
Gρ(ro)

|r − ro|
, (1)

where |r2
o | = R2

J is the ring radius. Then expanding the denominator

1

|r − ro|
=
(
R2
J + r2 − 2rRJ cosφo

)−1/2
, (2)

' 1

RJ

[
1 +

r

RJ

cosφo +
r2

R2
J

(3
2

cos2 φo − 1
2
)

]
, (3)

we obtain the integral expression for the potential

Φ(r) = −λG
∫
dφo

[
1 +

r

RJ

cosφo +

(
r

RJ

)2 (
3
2

cos2 φo − 1
2

)]
, (4)

where λ = MJ/(2πRJ) is the linear mass density of the ring. After integrating over the angle
φo, we find

Φ = −GMJ

RJ

− GMJ

4R3
J

r2 . (5)

Thus, the Lagrangian with the potential V = mΦ(r) is

L ' 1

2
mṙ2 +

1

2
mr2φ̇2 +

GmM�

r
+ αr2 , (6)

where we have dropped an irrelevant constant, GmMJ/RJ , and

α =
GmMJ

4R3
J

. (7)

(b) Then we rescale the radius

r ≡ r

R0

R0 =
`2

mk
, (8)

as given in the text. You can then find the timescale T0 by directly determing which combo
of `,m, k has units of time. This is most easly done by noting that there is a timescale, T0,
where the kinetic term and potential terms of the unperturbed problem are the same order
of magnitude

mR2
0

T 2
0

∼ k

R0

. (9)

This leads us to define

T0 ≡
(
R3

0m

k

)1/2

=
`3

mk2
. (10)
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The energy then is units of

E0 = m
R2

0

T 2
0

=
k

R0

=
k2m

`2
(11)

Then the dimensionless Lagrangian is

L =
L

Eo
=

1

2

(
dr

dt

)2

+
1

2
r2

(
dφ

dt

)2

+
1

r
+ α r2 , (12)

where

Eo =
k2m

`2
(13)

and

α =
αR2

0

Eo
=

1

4

(
MJ

M�

)(
RM

RJ

)3

. (14)

(c) We drop the bars.
pr = ṙ pφ = r2φ̇ (15)

The Hamiltonian is

H =
1

2
p2
r +

p2
φ

2r2
− 1

r
− αr2 . (16)

The Hamilton equations of motion are

ṙ =pr , (17)

φ̇ =
pφ
r2
, (18)

ṗr =
p2
φ

r3
− 1

r2
+ 2αr , (19)

ṗφ =0 . (20)

Now we set the initial value of pφ(t0) = ` = 1. The equations of motion guarantee that
pφ = 1 at all subsequent times.

(d) We examine the radial equation,

ṗr =
1

r3
− 1

r2
+ 2αr , (21)

and demand that the right hand side (the radial component of the force) is zero for circular
orbits. Writing the circular radius as

ro = r(0)
o + r(1)

o , (22)

with r
(1)
o small, we solve order by order in α. For instance we expand

1

r3
=

1

(r
(0)
o + r

(1)
o )3

' 1

(r
(0)
o )3

− 3
r

(1)
o

(r
(0)
o )4

(23)
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Comparing the zero-th and 1st order equations we have

0th order:
1

(r
(0)
o )3

− 1

(r0
o)

2
= 0 (24)

1st order: − 3
r

(1)
o

(r
(0)
o )4

+
2r

(1)
o

(r
(0)
o )3

+ 2αr(0) = 0 (25)

The 0th order equation sets r
(0)
o = 1, and then the first order we find

r(1)
o = 2α (26)

(e) We now expand the radius near the equilibrium circular radus, r → ro + δr(t) with
ro ≡ 1 + 2α. We find that to first order in δr and α we have

1

(1 + 2α + δr)3
− 1

(1 + 2α + δr)2
+ 2α(1 + δr) ' (1− 14α)δr (27)

d2δr

dt2
= ṗr = −(1− 14α)δr . (28)

Thus, the period of radial oscillations is

τM =
2π

ω0

=
2π√

1− 14α
' 2π(1 + 7α) (29)

(f) Then we examine the angular equation

φ̇ =
1

r2
, (30)

=
1

(r
(0)
o + r

(1)
o + δr)2

, (31)

' (1− 4α− 2δr(t)) . (32)

Integrating the over a full period of radial oscillations t = 0 . . . τM , the term proportional to
δr vanishes upon integration, and we find that the azimuthal angle has changed by

∆φ = τM(1− 4α`6) ' 2π(1 + 3α`6) . (33)

Thus the angle φ deviates from a full rotation by +6πα`6. The precession is

∆φ = 6πα rad per turn . (34)

With the numerical value of α, we find

∆φ =
3π

2

MJ

M�

(
RM

RJ

)3

' 1.88× 10−6 rad per turn , (35)

which should be compared to the nominal value of 1.78×10−6 rad/turn. Eq. (35) is 5% larger
than the nominal value, and this deviation is consistent with order ε2 ' 4% corrections.
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Problem 1. A scattering cross section

A particle of mass µ moves in the repulsive 1/r2 potential

U(r) =
h

r2
, h > 0 .

(a) Find equation for a generic trajectory r(φ) characterized with energy E and angular
momentum ` 6= 0. Follow the convention that the direction φ = 0 points to the
pericenter (point of closest approach).

(b) Find the time dependence on this trajectory, taking the time t = 0 at the pericenter.

(c) Find the differential scattering cross section dσ(θ)
dΩ

for a particle with energy E in this
potential.
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Solution

For the repulsive potential, the energy E of the particle with non-vanishing angular momen-
tum can only be positive. This means that there are no bound trajectories, or trajectories
“falling on the center”. There are only trajectories deflected by the center of the potential.

(a) To find such a trajectory quantitatively, we start with the integral for the polar angle
φ and evaluate it:

φ =
l

(2µ)1/2

∫ r dr/r2

[E − (h+ l2/2µ)/r2]1/2

= −
∫ 1/r du

[(2µE/l2)− (1 + 2µh/l2)u2]1/2
=

=
1

(1 + 2µh/l2)1/2
arccos

( 1/r[
E/(h+ l2/2µ)

]1/2) .
Rearranging the terms we finally get the explicit expression for the trajectory in the
repulsive 1/r2 potential:

1

r
=
( E

h+ l2/2µ

)1/2

cos
[
(1 + 2µh/l2)1/2φ

]
.

This expression shows that the fact that we have made an integration constant zero,
when evaluating the integral for the trajectory, results in the standard choice of orien-
tation of our polar system, in which the line to the pericenter is the direction φ = 0.
Also, we see that the distance to the pericenter is:

rmin =
(h+ l2/2µ

E

)1/2

.

(b) For the 1/r2 potential, the integral for the time t along the trajectory, with the con-
vention that t = 0 at the pericenter, takes the form:

t = (µ/2)1/2

∫ r

rmin

dr

[E − (h+ l2/2µ)/r2]1/2
,

and gives:

t = (µ/8)1/2

∫ r2

r2min

dr2

[Er2 − (h+ l2/2µ)]1/2
=
( µ

2E

)1/2

[r2 − r2
min]1/2 .

This equation can be solved directly for r:

r(t) =
[
r2
min + (v0t)

2
]1/2

,

where v0 = (2E/µ)1/2 is velocity of particle far away from the center. Combined
with the equation for the trajectory obtained above, it also gives explicitly the time
dependence of the polar angle:

φ(t) =
1

(1 + 2µh/l2)1/2
arcsin

( v0t[
r2
min + (v0t)2

]1/2) .
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(c) The last equation in part (b) shows that the angle 2Ψ between the incoming and
outgoing directions of the particle scattered by the 1/r2 potential is:

2Ψ =
π

(1 + 2µh/l2)1/2
.

This equation gives the relation between the scattering angle Θ = π − 2Ψ and the
impact parameter b which determines the angular momentum, l = µv0b. An elementary
algebra transforming this equation makes the relation explicit:

b =
(h/E)1/2(π −Θ)[

2πΘ−Θ2
]1/2 .

From this relation we find the derivative of b:∣∣∣∣ dbdΘ

∣∣∣∣ =
(h/E)1/2π2[

2πΘ−Θ2
]3/2 .

and finally, the differential cross section dσ(Θ):

dσ(Θ)

dΩ
=

b

sin Θ

∣∣∣∣ dbdΘ

∣∣∣∣ =
h

E sin Θ

π2(π −Θ)

Θ2(2π −Θ)2
.
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Problem 2. (Goldstein) A hoop on a cylinder

(a) First consider a small block of mass m on a cylinder of radius R on earth. If the block
starts from rest on top of the cylinder, determine at what angle θ the block falls off
the cylinder using the Lagrangian formalism to impose the constraint r = R.

the coordinates are r, ✓

(b) Now consider a hoop of mass m and radius r0 rolls without slipping on a fixed cylinder
of radius R as shown in the figure. The only external force is that of gravity. If
the cylinder starts rolling from rest on top of the bigger cylinder, use the method of
Lagrange multipliers to find the point at which the hoop falls off the cylinder. You
should find θ = 60o

(i) Setup some coordinates. I took those based on the picture below. Determine the
relaxation between the X and Y coordinates of a point on the rim of the hoop in
terms of r, θ, ψ.
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✓

✓
 

r

the coordinates are r, ✓, 

r0

An alternate choice of coordinates is to take an angle φ measured to the angle
angle θ as shown below. You may wish to use the coordinates r, θ, φ, i.e. ψ = θ+φ

✓
r

r0

(ii) Starting with the general expression

T =
1

2

∫
dmv2 (36)

show that the kinetic energy is of the hoop is

T =
1

2
mr2θ̇2 +

1

2
mṙ2 +

1

2
mr2

0ψ̇
2 (37)

In the alternate coordinates it reads

T =
1

2
mr2θ̇2 +

1

2
mṙ2 +

1

2
mr2

0(θ̇ + φ̇)2 (38)

(iii) Determine a relation between dθ and dψ if the hoop rolls without slipping. It
may be easier to formulate a relation between dθ and dφ.

(iv) Introducing a Lagrange multiplier for r to enforce the constraint (like in part
a), and find the angle where the hoop falls off the cylinder. You should find
θfall−off = 60o
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