
Problem 1. Constraints in the Hamiltonian Formalism

If the canonical variables pi, qi, t (with i = 1 . . . N) are not all independent but are related
by auxiliary conditions of the form

ψk(pi, qi, t) = 0 (1)

(with k = 1 . . .m) determine the modified Hamilton equations of motion by varying the
appropriate action.

The solution to this problem is only a few lines.
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Problem 2. The first order formalism and the transition to the
Hamiltonian

This problem uses the notion of Lagrange multipliers and Legendre transforms to under-
stand the action in the Hamiltonian formalism. Previously we said that the action in the
Hamiltonian formalism is

S[q, p] =

∫
dt

(
p
dq

dt
−H(p, q)

)
. (2)

We showed that extremizing this action gives Hamilton’s equations of motion and that these
equations are equivalent to the Euler-Lagrange equations. We did not, however, derive
S[q, p] directly from the action of the Lagrangian, S[q]. We will do this in this problem. The
solution is only a few lines.

The action principle says that the action is

S[q] =

∫
dtL(q, q̇) (3)

and the system will follow the trajectory q(t) which extremizes this action. Using a Lagrange
multiplier called p(t) (for reasons discussed below), we may separately vary the velocity v(t)
and q̇ by defining

Ŝ[q(t), v(t), p(t)] ≡
∫
dt L̂(q, q̇, v, p) L̂ ≡ L(q, v)− p(v − q̇) . (4)

and require that δŜ = 0 for independent variations of q, v, p. The Lagrange multiplier
enforces that v = q̇ at the level of the equations of motion rather than the action. This
“theorist-gone-wild” procedure is known as the “first order formalism”, and has been found
to be useful in analyzing various rich theories (such as gravity) which have complicated
constraints.

(a) Consider the Lagrangian

L =
1

2
mq̇2 − U(q) (5)

Show that the equations motion following from δŜ[q, v, p] = 0, reproduce Newton’s
laws. Does the Lagrange multiplier have an appropriate name? Explain.

(b) One way to to extremize Ŝ is to first extremize Ŝ with respect to p, v with q fixed,
leaving a reduced action Sred[q] to be extremized later. Argue that this reduced action
is the Lagrangian formulation S[q] in Eq. (3).

(c) Now extremize Ŝ with respect to v first with q and p fixed, leaving a reduced action
Sred[q, p] to be extremized later, and argue that this reduced action is the Hamiltonian
formulation S[q, p] in Eq. (2).
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Problem 3. (Milton, de Raad, Schwinger) Virial theorem from
Noether logic

The virial theorem says that for the periodic motion of a particle the time averaged kinetic
energy is related to an average of the potential energy:

2T = r · ∂U(r)

∂r
. (6)

For simplicity we will limit ourselves to the single particle Lagrangian

L =
1

2
mṙ2 − U(r) , (7)

but when many particles are involved, the theorem generalizes straightforwardly .

2T =
∑

a

ra ·
∂U(r)

∂ra
. (8)

Here we will derive this useful result using Noether logic1.
Recall that we say that the trajectory is called “onshell” if it satisfies the equation of

motion, and, when necessary, notate this by placing a bar underneath the coordinates r(t)

(a) For a closed orbit of potential U(r) ∝ rβ what is the statement of the virial theorem.
What is the statement of the theorem for a harmonic oscillator U(r) ∝ r2 and the
gravitational potential U(r) ∝ r−1.

(b) Consider a quantum mechanical particle in one dimension in an energy eigenstate
H |ψn(x)〉 = En |ψn〉 (an eigenstate is analogous to the classical periodic trajectory).
Show that for this eigenstate we have

〈2T 〉 =

〈
x
∂U(x)

∂x

〉
(9)

by considering 〈ψn| [xp,H] |ψn〉. (Incidentally we will see later in the course that the
generator G(x, p) = xp generates infinitesimal rescalings in the classical theory. That
it why it is natural, see below, to consider the commutator [G,H] in the quantum
mechanical formulation.)

(c) Now return to classical mechanics. Consider a specific variation of the trajectory
consisting of an infinitesimal rescaling of the coordinate r

r → (1 + ε)r (10)

What is the change of the onshell action S[r] for this specific variation over one com-
plete period of a periodic classical trajectory r?

(d) What is the change in the action δS[r, δr] for the specific variation in Eq. (10). Do
not assume that r is onshell.

(e) Using (c) and (d) prove the theorem in Eq. (6)

1It is not exactly the Noether theorem, since there is no conserved charge and no symmetry. But the
derivation is essentially the same as is used to derive Noether theorem.
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Problem 4. Foucault Pendulum and the Coriolis Effect (MIT-
OCW)

(a) We showed in class using the Newtonian formalism that, in a rotating frame of reference
with ω constant, the equation of motion for a particle takes the form

mar = Feff , (11)

where
Feff ' F − 2m (ω × vr) (12)

Here vr = (dra/dt) ea(t) is the velocity in the rotating frame, and ea(t) is the rotating
basis of the frame. We have neglected terms of order ω2 for simplicity. Derive this
equation of motion from the Lagrangian formalism, where the Lagrangian in a fixed
inertial frame is

L =
1

2
mv2

O − U(r) (13)

with vO = dr/dt in that fixed frame.

Now consider a pendulum consisting of a long massless rod of length ` attached to a mass m.
The pendulum is hung in a tower that is at latitude λ on the earth’s surface2, so it is natural
to describe its motion with coordinates fixed to the rotating Earth. Let ω (i.e. once per day)
be the Earth’s angular velocity. Use either the (x, y, z) or (r, θ, φ) coordinates shown in the
figure. Here z is perpendicular to the Earth’s surface and y is tangent to a circle of constant
longitude that passes through the north pole, and x therefore points east. The radius of the
earth is Re

3 Physics 8.09, Classical Physics III, Fall 2014 

2.  Foucault Pendulum and the Coriolis E↵ect [13 points] 
Consider a pendulum consisting of a long massless rod of length ` attached to a mass 
m. The pendulum is hung in a tower that is at latitude � on the earth’s surface, so it 
is natural to describe its motion with coordinates fixed to the rotating Earth. Let ! 
be the Earth’s angular velocity. Use the spherical coordinates (r, ✓, �) shown in the 
figure to investigate the Coriolis force. Here ẑ is perpendicular to the Earth’s surface 
and ŷ is tangent to a circle of constant longitude that passes through the north pole. 

a) [9 points] The velocity is given in terms of ~v in the 
rotating frame by ~v + !~ ⇥ (Reẑ + ~r), so 

m⇥ ⇤2 
L = ~v + ~! ⇥ (~r + Reẑ) � V , 

2

with Re the radius of the earth, and V the potential en-
ergy due to gravity near the earth’s surface (we neglect 
air resistance). Writing everything in terms of the vari-
ables ✓ and �, and the fixed angle �, derive the equations 
of motion for the pendulum. From the start you should 
only keep terms up to first order in !. You can also drop 
the term / !Re since it is a total time derivative. 
b) [4 points] Since ` is large, consider the small angle 
approximation for ✓ and simplify your equations of mo-
tion from a). Demonstrate that the pendulum undergoes 

˙precession with � = ! sin �. 

3.  Angular Velocity with Euler Angles [9 points] 

(a) [2 points] Show that the components of angular velocity along the body axes 
(x 0 , y 0 , z 0 ) are given in terms of Euler angles by 

!x0 = � ˙ sin ✓ sin   + ✓̇ cos  , 
˙!y0 = � sin ✓ cos   � ✓̇ sin  , 
˙ ˙!z0 = � cos ✓ +  . 

This is done in the text! I am asking you to go through the steps to ensure that 
you understand the calculation. 

(b) [4 points] Show that the components of angular velocity along the fixed space 
set of axes, the inertial frame (x, y, z), are given in terms of the Euler angles by 

!x = ✓̇ cos � +  ̇ sin ✓ sin � , 
!y = ✓̇ sin � �  ̇ sin ✓ cos � , 
!z =  ̇ cos ✓ + �̇ . 

This problem is Goldstein Ch.4#14. You may use results given in Goldstein. 
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Image by MIT OpenCourseWare.

20o latitude is the equator, 90o latitude is the north pole
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(b) Determine the Lagrangian of the Pendulum. From the start you may keep terms up
to first order in ω, and of course you may neglect total time derivatives to simplify the
analysis. Derive the Lagrangian for the pendulum small oscillations. I find

L =
1

2
m`2

[
(θ̇)2 + θ2φ̇2

]
−mω`2φ̇ sin(λ)θ2 −mg`θ

2

2
(14)

though in retrospect it may have been easier to use the xy coordinate system.

(c) Demonstrate that the pendulum undergoes precession with a rate φ̇ = ω sinλ, by
exactly solving the equations of motion for the small oscillations. Hint: it may be
helpful to change variables back to Cartesian coordinates

x ≡`θ sin(φ) (15)

y ≡`θ cos(φ) (16)

before determining the equations of motion. The resulting equations can be solved
exactly, by introducing z(t) = x+ iy, and solving for z. Then the x and y coordinates
may be recovered by taking the real and imaginary parts. Describe carefully which
way the pendulum precesses.
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(a) The velocity of a particle in a rotating frame is

vO = v + ω × r (17)

Where here and below we will drop the label r, i.e. v = vr.
So the Lagrangian is

L(r, ṙ) =
1

2
m(v + ω × r)2 − U(r) (18)

So the Lagrangian to first order in ω is

L =
1

2
m(v + ω × r)2 − U(r) (19)

L '1

2
mv2 +mv · (ω × r)− U(r) (20)

L(ra, ṙa) =
1

2
ṙ2
a +mṙaεabcω

brc − U(ra) (21)

In the last step we have expressed the Langrangian in terms of our chosen cooridinates (i.e.
the coordinates ra in the rest frame), rather than the vector notation. From here on it is
just an ordinary Lagrangian mechanics prolbem, and the equations of motion are found in
the usuual way

d

dt

(
∂L

∂ṙd

)
=
∂L

∂rd
(22)

d

dt
(mṙd +mεdbcω

brc) =− ∂U

∂rd
+mṙaεabdω

b (23)

d

dt
(mṙd) =− ∂U

∂rd
− 2mεdbcω

bṙc (24)

This says that the d-th components satisfy

m(a)d = −(∇rU)d − 2m(ω × v)d (25)

for all d, i.e. a vector equation is satisfied

ma = −∇rU − 2mω × v (26)

(b) We parametrize the pendulum with the with the coordinates x, y

z = (`2 − x2 − y2)1/2 = `− x2 + y2

2`
(27)

We then have
1

2
m(ẋ2 + ẏ2 + ż2) ' 1

2
m(ẋ2 + ẏ2) (28)

Then at linear order

r =(x, y,O(x2)) (29)

v =(ẋ, ẏ, O(x2)) (30)
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Figure 1: Figures for the focault pendulum.
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Then using the picture on the next page we write

ω = (0, ω cos(λ), ω sinλ) (31)

So
mω · (r × v) = mω0 sinλ(xẏ − yẋ) (32)

So the Lagrangrian is simply

L =
1

2
m(ẋ2 + ẏ2)−mω0 sin(λ)(yẋ− xẏ)− 1

2

mg

`
(x2 + y2) (33)

(c) The equations of motion stemming from the Lagrangian are

ẍ =− g

`
x+ 2ω0 sin(λ)ẏ (34)

ÿ =− g

`
y − 2ω0 sin(λ)ẋ (35)

Note in particular the factor of 2 which arises from the Euler-Lagrange equations with
p = ∂L/∂ẋ = mẋ−mω0 sinλy, e.g.

d

dt
(mẋ−mω0 sin(λ)y) =− mg

`
x+mω0 sin(λ)ẏ , (36)

(37)

Combining into single equation for Z = y + ix we have

Z̈ = −g
`
z + i2ω0 sin(λ)Ż (38)

For small ω0 we can solve this euation (compare with the damped oscillator). By substituting
z = z0e

−iωt we find for the characteristic frequencies

− ω2 +
g

`
− 2ω0 sin(λ)ω = 0 (39)

The roots of the characteristic equation are

ω ' ±
√
g

`
− ω0 sinλ (40)

So the solution is
(y + ix) = e+iω0 sinλt

(
C1e

−i
√
g/` t + C2e

i
√
g/` t
)

(41)

To understand the physics take the case when C1 = C2 = A, and then

ρ(t)eiφ = y + ix = eiω0 sinλtA cos(
√
g/` t) , (42)

where tanφ = x/y, and ρ = A cos(
√
g/`t). The solution exhibits a precession in a westerly

direction (increasing x) when the pendulum plane runs from north to south (the y direction).
The precession rate is

φ̇ = ω0 sinλ (43)
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