Problem 1. Preliminaries

Answer as briefly as possible! Just a few lines each — enough to show you know how it works
and no more.

(a)

(Optional, but strongly recommended if not obvious to you) Give an informal expla-
nation (given in class) why

€abc€abe = 5ag5bb - 5abébg (1)
and use it to prove the “bac” to “abc” rule':
ax(bxe)=bla-c)—(a-b)c (2)

The centrifugal force is
Foopy = —mw X (WX 7). (3)

Use the bac abe rule to show that Fi.,, = mw?r | where 7, is the part of r perpendicular
to w. The figure below shows how this is used.

|

object moving
in a circle with frequency omega

Feent = —m X (J X T)
=+ mw?7F,

Given a tensor I = I ;e,R ey in the rotating basis and in the fixed basis® I = [ ,e,®e,
(here e, = Rupe;), show that the components are related via

Iab = Rac Rbd lcd . (4)
Express this transformation rule with matrices.

Show that
WXV=D -wW=v- W (5)

where (for example) v = v, e, ® e, denotes the antisymmetric tensor 0,5 = €4p0°
associated with the vector v. Express these two alternate forms of the cross product
using matrices.

'read as “back to abc”.
20ften I will write e, ® e}, as simply e, e, with the ® implied. Then I - v takes the dot product with the
second slot I - v = I,;v’ e,, while v - I takes the dot product with the first, v*I pep.



(d) Show that w,, = (R™'R),e

(e) Determine the projection of & on to the lab frame axes e;,e,,e;. (You may use
either algebraic means, computer algebraic means, or use the appropriate picture from

lecture, or all three means.) You should find

wx 0 cos(¢p) + w sin(6) sin(¢)
wy | = [ Osin(¢) — 1 sin(0) cos(d)
wz W eos(0) + ¢
A
C Y

wx =¢ cos O sin ) + 0 cos
wy = cosfcostp — fsin

wz ZQBCOSG + w

Line of nodes

(6)



(a) Just us e, = R,.e., and find immediately
I=1R.,Rue.®e;=1,4e. Qe

So
]abRacRbd - lcd

Or in matrix form

(R"IR)ea = (1)

Multiplying on the left and right by matrices R and RT respectively gives
(I)ab - (RlRT)ab

Or reverting to index notation

]ab :Raclcd (RT)db
:RacRbdlcd

(b) We have

W X UV =€4pc.WpV-E
:’Oabwbea
=0 w
=Vc€eapWp€q
:’Ucwcaea

=V - W

(c) We have from part a

(@)ed = (R'@R)ca (19)
Since & = RR~" we have
(@)cd = (RTRR?lR)cd = (RilR)cd (20)
(d) First we use algebra. The matrix R, reads
cos(¢) cos(v)) — cos(0) sin(¢) sin(¢y))  cos(v) sin(¢) + cos() cos(¢) sin(y)) sin(f) sin (1))
— cos() cos(1) sin(¢p) — cos(¢) sin()) cos(f) cos(¢) cos(y)) — sin(¢p) sin(y)) cos(v)) sin(f)
sin(#) sin(¢) — cos(¢) sin(0) cos(0)
(21)
Then we simply compute RabRb_cl = Rab(RT)bc yielding
0 cos(0)¢' + ' sin()0" — cos(y)) sin(9)¢’
o= —cos(0)¢' — ¢/ 0 cos(¥)f' + sin(0) sin(¢)) ¢’
cos(¥) sin(0) ¢’ — sin(1))0"  — cos(1))0" — sin(f) sin(y))¢’ 0

—_ =
S Ot
~— ~— — ~— ~— ~—

N N N N N

(22)
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We can read from this matrix the corresponding entries of & = (w3, W31, W12)

w, = cos(1)f + sin(f) sin(¢) ¢’ (23)
wy = — sin(¥)0 + cos(¢) sin(6)¢’ (24)
w, =cos(0)¢’ + 1 (25)

Now we can project w on the e axes
W= We€q = waRabgb = W€y, (26)

So without thinking we type the appropriate expression into mathematica

Wy = waRab (27)
As a matrix
(gx W, gz) = (u)z Wy wz) R (28)
yielding
6’ cos(¢) + 1 sin(f) sin(¢)
(('_")x Wy ('_")z) = ¢ Sln(¢) - ¢, Sln(e) COS(¢) (29)
Y cos(0) + ¢

This is also clear from the picture given in class (with one extra line added). For instance
from Fig. 1, we have

wy =cost+ ¢ (30)



X Y

% Line of nodes

Figure 1:



Problem 2. A Rolling Cone (Adapted from Geldstein Ch.5 #17)

A uniform right circular cone of height A, half-angle o, and density p rolls on its side without
slipping on a uniform horizontal plane. It returns to its original position in a time 7 .

(a) Find the moment of inertia tensor for the body (or principal) axes centered on the tip.

I find

3 71; tan?a + 1
I° = 5Mh2 T tan? o + 1 (31)
%taﬂQOé

(b) The cone is turning around the Z axis in a counterclockwise fashion as seen from above.
Consider the infinitesimal rotation at ¢ = 0 (see figure) that the cone experiences — the
displacement of a point r on the cone’s body is

r—7r+00 xr, (32)

where §0 points along the Y axis. Describe qualitatively why Eq. (32) (with the
specified direction of w) is what we mean by a rolling cone. Argue in particular that
w, = 0 and write down the components of w(t) in the lab frame.

(c¢) Determine the Euler angles describing the cone as a function of time. Take the Z axis
to point along the axle of the cone. Interpret ® and the relation between ¢ and ¢.

(d) Find the kinetic energy of the rolling cone. I find

T= Mh2<27r) [%(1—1—5008204)] (33)

T

(e) (Optional.) Write down the components of the L(t) in the lab frame. (You may wish
to check your results by computing 7' = fw - L)

(f) (Optional.) There are two ways to compute the kinetic energy. The first way uses the

expression
1
T:§w-]tip-w. (34)
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where I, is the moment of inertia around the tip. The second way uses the moment
of inertia of the center of masss I,

1 1
T:§w-Icm~w—|—§Mv§m. (35)

Show that these are equivalent to each other provided I.,, and Iy, are related by the
parallel axis theorem.



(a) First I find the center of mass, the moment of inertia around the tip, and the moment
of inertia around the center of mass. The center of mass questions were not asked for, but
was asked for in other years so I include it here as example
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(b) In each time moment the cone pivots around the line of contact. Any rotation around
the Z axis would cause a skidding motion of the line of contact (see figure), which is not
allowed by the rolling without slipping constraint. Indeed the points on the line of contact
are not moving. If there was an wy then these points would move in time ¢ by an amount
0r = wzot z x r. We must in general have w parallel to the line of contact if the line of
contact is to be stationary. The line of contact rotates with by an angle of 27 over time 7

and this means
(W, Wy, wy) = wo(—sin(27 /1), cos(2m/7),0) (36)

The last step is to relate wg to 7. The point A moves in a circle of radius R, = hcosa
over time 7 and thus has velocity v4 = 2rhcosa/7T. Since vg4 = |w X r4] = wohsina (see
figure and remember we are rotating around the line of contact), we have wy = 27” cot
leading to

Wy :Q?W cot o (—sin(2wt /7)) (37)
Wy :277T cot a (cos(27t/T)) (38)
w, =0 (39)

Relcding w, to A

N Ry
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(c¢) Having found the the angular velocity we can find the Euler angles. We have from the
previous excercise

wx 9 cos(¢) + w sin(0) sin(¢)
wy | = | Osin(¢) — ¢ sin(f) cos(p) (40)
wz W eos(f) + ¢

where for example 6" = df/dt, which should be matched with Eq. (37). So we need to solve
this equations for 6, ¢, and 1. Using geometry we see first that § = 7/2 — «v is constant and
thus

sin(f) = cos(a) (41)
cos() =sin(« (42)
Thus we need
.2
¢ =— (43)
T
2r 1
- T sina <44)
Or
27t
= (45)
2t 1
h=— " (46)
T sina

Clearly we interpret ¢ = 27t/7 as the azimuthal angle of the cone with respect to the
fixed axes. Relation between ¢ and ¢ came from the rolling without slipping constraint

0 = dipsin(«) + do (47)
The sign is correct, since of the cone advances in by d¢ then the vector
dp=dtp =dtie, (48)

to point towards the apex of the cone. The figure below interprets this constraint relation
further
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then ag is positive but U points  towards the fip &
the cone, which is pegabve with our conventions.

(d) We first write down the components of w in the body basis. From the figure given in
the problem

Wx =0 (49)
Wy =wp sin @ (50)
Wz = — Wy Cos & (51)
with wg = (27/7) cot . Evaluating
1 s 1 2
T=- YYyWy + = YAAYA (52)
2 2
where from part (a)
SEVICI R SEVICI D
I, = th (;tan”a +1) I.= th (5tan” ) (53)

we find after minor algebra the result quoted in the problem

2
7= 3 (-”

0 ) (1+5cos”a) (54)

T

(e) To evaluate L in the lab frame we can simply evaluate L at ¢ = 0 and then recognize
that L at a later time is simply a rotated version of this

L, ,=e.l.w. +e,l,w, (55)

We can then use geometry
e, =cosfle, —sinfe, =sinae, — cosag, (56)
e, =sinfe, + cosfe, = cosae, + sinae, (57)
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which after minor algebra gives

3 .
L|,_,= EMh%tan& [(2 + 10 cos® a)e, + (10 cos® a — 2)62]

We can easily verify that with
w = (0,wp, 0) = (0, ¢ cot a, 0)

one recovers part (d)

1 3 :
T=-w-L=—_—Mh¢(l 2
5w 10 h*¢~(1 + 5 cos” )

To evaluate L(t) a later time ¢ # 0 one simply makes the replacement,

e, — cos(2nt/T)e, —sin(27t/7)e,

in Eq. (55).
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Problem 3. Nutation of a Heavy Symmetric Top

Consider a heavy symmetric top with one end point fixed.

()

Write down the Lagrangian from class. Carry out Routh’s procedure explicity by
Legendre transforming with respect to the the conserved momenta py and p,. Write
down —R which serves as effective Lagrangian L.g for §. Show that 6 obeys the
equation of motion following from this effective Lagrangian

. g
10 = — 62
89 ) ( )
where ( 9)2
p¢ — pw COS
Ug = fcos ) 63
= gL Cos U T T 2 g (63)
Also show that 5
. Py — Dy COS
= 64
¢ I, sin?(0) (64)

In class we analyzed the limit when gravitational torque is small to the rotational

kinetic energy, mgl/(p},/I,) < 1. Take py/py = r with 0 < r < 1. Within this

approximation (known as the fast top approximation), if the energy E is adjusted to

the minimum of the effective potential, the tip of the top will slowly precess with
mgl

=0, and ¢=——. (65)
Py

This is is shown in Fig. 2(d) which shows the trajectory of the tip of the top on the
sphere.

Now if the energy of the system is slightly larger than the minimum of U.g, describe
qualitatively the motion in € and ¢. For what range in F do the first (a) and second
(b) figures describe the top’s motion? Explain. Work in the fast top approximation

Using the fast top approximation outlined in (b), compute the period of  oscillations
for a given energy E with E just larger than the minimum of Usg. Determine the
precession rate ¢(t), as a function of time. You should find

. mgl p, A
qs:_g__w

t 66
pw [1 SiIl2 00 COS(wo ) ( )

where wy = py /11, and 6 is the mean value of the small §6.
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Figure 2: Motion of the tip of the heavy symmetric top
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Solution:

(a) The first part of this is directly out of lecture and we will not analyze it further here, see

page 6 of lecture.

(b) Now let us analyze the motion in the effective potential. The precession rate is determined

by &
b= Dy — Py cOS O
I sin*(0)

And the effective potential is

(pp — Py COS 0)?
21, sin? @

Ueg = mgl cost +
We set up some dimensionless variables as done in lecture, effectively setting
I =py =m = 1.

Motivating the definitions

_ mgl
9=—=5,7
pi/ I
r =22
Py
_ E
E ==
p¢/Il
So the effective potential and presssion rate read
. (r—cosf)
¢ = a2,
sin® 0
while the effective potential is
(r — cos6)?

U = gcos(6) + 20

Below we will work with u = cos 6 and the effective potential for the variable u is

Uep(u) - (r —u)?
——==U= —_—
pa/h T e
The precession rate is .
¢  r—u
po/l 1 —u?

(67)

(70)
(71)

(72)

(74)

(75)

(76)

In the fast top approximation g < 1. Then in the zeroth approximation we can neglect
the g term. Then a sketch of the potential for r > 0 versus u = cos 6. is shown on the next
page. For u > r the precession rate is positive while for u < r the precession rate is negative.
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Consider first the motion when in the effective potential when £ = FE;. Then the motion
will oscillate between ¢; and 6y as shown in the figure Fig. 3. When u = cos(f) < r, the
precession rate ¢ is positive (see Eq. (76)), while when cos(6) the precession rate is negative.
Thus the motion in this case is the “loop-dee-loop” kind of behavior shown in Fig. 2(b). It is
not possible to see the behavior seen in Fig. 2(a) without going to the next order in gravity.

Now let us include gravity. Gravity is only important when the generalized forces,
—(3Ue(§c) /00, from the zeroth order effective potential are small, i.e. near the minimum of
the zero-th order effective potential. Thus we expand the green region in detail. Near this
point u ~ r and we can work with du = u—r. Then the effective potential near the minimum
is approximately:

du?

Ueg(5u) =gr + g5u + m

(77)

Completing the square and notating for convenience 1 —12? = s, the effective potential takes
form

- 1 du + gso)?
Uet(6u) = gr — 59250 +%
—_—————— 0

const

(78)

A plot of the effective potential in this region is shown by Fig. 3(b). Now if the energy is
greater than £ > gr (as in F,) the motion is the “loop-dee-loop” type. If the energy FE is
less then gr but greater than U, (as in Ej3) then the motion will be of the type shown in
Fig. 2(a).

To summarize we find (in the original units) the loop-dee-loop behavior is for

a4
E> 9 cos 6, (79)
Dy
with cosfy = ps/py. For E in the range
(1 (1 (1)?
I cos 0o > E > My (mg2 ) sin? . (80)
Dy Dy 2 py

we see the Fig. 2(a) behavior.

(c) With a clear phyical understanding we can analyze the behavior. The original Lagrangian

for € motion (technically this effective lagrangian is minus the Routhian Leg = —R)
1 .
Leg = 51192 + Uer(0) (81)

Considering the discussion of the previoius item we define a variable du .
du = cos(f) —r (82)
When du is positive the precession rate is negative, etc. Now

ot = sin(6)0 ~ /1 — r26 (83)
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So the kinetic term of the effective Lagrangian becomes

1 15
SL6? = 2 s? 4
9 19 2806U (8 )

So in our system of units

Lg 1 < I2 )5@2— (5u + 507)>

350 250

= + const 85
pi / 5L 2 ( )

Calculating the equation of motion of du one finds

Dy

(%2) Sii = —(6u + 507) (86)

This is the equation of a harmonic oscillator with fequency wy = p, /11 oscillating around a
minimum $pg. The solution
du = —s0g + Acos(wpt) . (87)

So unravelling the definitions, we find cos@ and ¢ explictly as a function of time

1
cos(#) — cos(fy) = — sin” b, mpgff + A cos(wot) (88)
b= mgt _ by cos(wot) (89)

Py I 1 Sin2 ‘90
The amplitude A determines the energy of the oscillations. The top will do the loop-dee-loop
if A > sin®0ymglI/pl.

Note that the time average precession rate is simply the same as one would have if one
made no oscillations as derived in class
mgl

¢ = e (90)
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