
Problem 1. Preliminaries

Answer as briefly as possible! Just a few lines each – enough to show you know how it works
and no more.

(a) (Optional, but strongly recommended if not obvious to you) Give an informal expla-
nation (given in class) why

εabcεabc = δaaδbb − δabδba (1)

and use it to prove the “bac” to “abc” rule1:

a× (b× c) = b(a · c)− (a · b)c (2)

The centrifugal force is
Fcent = −mω × (ω × r) . (3)

Use the bac abc rule to show that Fcent = mω2r⊥ where r⊥ is the part of r perpendicular
to ω. The figure below shows how this is used.

object moving 
in a circle with frequency omega

(b) Given a tensor I = Iabea⊗eb in the rotating basis and in the fixed basis2 I = Iabea⊗eb
(here ea = Rabeb), show that the components are related via

Iab = RacRbd Icd . (4)

Express this transformation rule with matrices.

(c) Show that
w × v = v̂ ·w = v · ŵ (5)

where (for example) v̂ = v̂ab ea ⊗ eb denotes the antisymmetric tensor v̂ab = εabcv
c

associated with the vector v. Express these two alternate forms of the cross product
using matrices.

1read as “back to abc”.
2Often I will write ea ⊗ eb as simply eaeb with the ⊗ implied. Then I · v takes the dot product with the

second slot I · v = Iabv
b ea, while v · I takes the dot product with the first, vaIabeb.
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(d) Show that ωac = (R−1Ṙ)ac

(e) Determine the projection of ~ω on to the lab frame axes e1, e2, e3. (You may use
either algebraic means, computer algebraic means, or use the appropriate picture from
lecture, or all three means.) You should findωXωY

ωZ

 =

θ̇ cos(φ) + ψ̇ sin(θ) sin(φ)

θ̇ sin(φ)− ψ̇ sin(θ) cos(φ)

ψ̇ cos(θ) + φ̇

 (6)

REPRESENTING RIGID OBJECT MOTION
The same geometric argument for arm movement can be applied
to moving rigid objects, which have additional rotational degrees
of freedom around an axis in space (Fig. 1). In the following, we
derive a general tuning rule for rigid motion, discuss its basic
properties, and then contrast the results with concrete models of
visual receptive fields.

Description of rigid object motion
Arbitrary instantaneous motion of a rigid object can always be
described by a rotation plus a translation (Fig. 4), but given the
same physical motion, this description is ambiguous up to an
arbitrary parallel shift of the rotation axis. For example, transla-
tional velocity can always be aligned instantaneously with the
angular velocity to obtain a screw motion by passing the rotation
axis through the point of zero velocity in a perpendicular plane
(Fig. 4).

This ambiguity disappears when the rotation axis is always
required to pass through the same reference center in the object,
say, the center of mass. We assume that the reference center has
been chosen so that a rigid motion can be described uniquely by
a translational velocity and an angular velocity. We return to this
topic later.

The static position and orientation of a rigid object can be
specified by six independent parameters:

! x, y, z, !1 , !2 , !3", (24)

where x, y, z describe the position of the reference center of the
object with respect to a coordinate system fixed to the world, and
!1 , !2 , !3 are three angular variables that represent the object’s
orientation. The translational velocity of the object is:

v " ! ẋ , ẏ , ż ". (25)

The angular velocity ! # (#x , #y , #z)T in world coordinates is
always linearly related to the time derivatives of the orientation
variables "̇ # (!̇1 , !̇2 ,!̇3)T:

! " M"̇, (26)

where M is an invertible 3 $ 3 matrix that depends only on the
orientation (!1 , !2 , !3). For example, when Euler angles are used
to describe orientation (Fig. 5), we have:

!!1 , !2 , !3" " !!, $, %", (27)

and

M " ! cos $ 0 sin ! sin $
sin $ 0 % sin ! cos $

0 1 cos !
" , (28)

which is invertible as long as det M # sin ! & 0 (Goldstein, 1980).
Only the abstract linear relation in Equation 26 is needed in the

next section. The actual choice of (!1 , !2 , !3 ) is unimportant
here. Because the time derivatives of different sets of variables
are linearly related by a Jacobian matrix, Equation 26 always
holds regardless of the exact choice of the parameterization of
orientation (see also Appendix A on independence of the coor-
dinate system).

Tuning rule for rigid motion
Consider neuronal activity associated with motion of a rigid
three-dimensional object. Assume that the mean firing rate of a
neuron relative to baseline, with a possible time delay, is proportional
to the time derivative of a smooth function of the position and
orientation of the object in three-dimensional space. In other words:

f " f0 &
d
dt '! x, y, z, !1 , !2 , !3", (29)

where f is the firing rate, f0 is the baseline rate, and ' is an
arbitrary function of object position (x, y, z) and orientation (!1 ,
!2 , !3), as described in the preceding section. This equation is
analogous to Equation 1.

The exact form of function ' need not be specified here. It may
depend on both the receptive field properties of the cell and the
visual appearance of the object and its surroundings. This formu-
lation is quite general. For example, all the visual cues of the
object illustrated in Figure 1 are functions of the position and
orientation of the object that completely determine how light is
reflected from various surfaces, whether diffuse (uniform scatter-
ing in all directions) or specular (energy concentrated around the

Figure 4. Arbitrary motion of a rigid object can always be decomposed
instantaneously into a translation and a rotation, allowing arbitrary par-
allel shift of the rotation axis. The two examples shown here describe
identical physical motion. Parallel shift of rotation axis affects the trans-
lation velocity but not the angular velocity !.

Figure 5. Euler angles (!, $, %) describe an arbitrary orientation of a
rigid object with axes (X(, Y(, Z() with respect to a standard orientation
with axes (X, Y, Z).
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(a) Just us ea = Racec, and find immediately

I = IabRacRbdec ⊗ ed = Icdec ⊗ ed (7)

So
IabRacRbd = Icd (8)

Or in matrix form
(RT IR)cd = (I)cd (9)

Multiplying on the left and right by matrices R and RT respectively gives

(I)ab = (RIRT )ab (10)

Or reverting to index notation

Iab =RacIcd(R
T )db (11)

=RacRbdIcd (12)

(b) We have

w × v =εabcwbvcea (13)

=v̂abwbea (14)

=v̂ ·w (15)

=vcεcabwbea (16)

=vcŵcaea (17)

=v · ŵ (18)

(c) We have from part a
(ω̂)cd = (RT ω̂R)cd (19)

Since ω̂ = ṘR−1 we have

(ω̂)cd = (RT ṘR−1R)cd = (R−1Ṙ)cd (20)

(d) First we use algebra. The matrix Rab reads cos(φ) cos(ψ)− cos(θ) sin(φ) sin(ψ) cos(ψ) sin(φ) + cos(θ) cos(φ) sin(ψ) sin(θ) sin(ψ)
− cos(θ) cos(ψ) sin(φ)− cos(φ) sin(ψ) cos(θ) cos(φ) cos(ψ)− sin(φ) sin(ψ) cos(ψ) sin(θ)

sin(θ) sin(φ) − cos(φ) sin(θ) cos(θ)


(21)

Then we simply compute ṘabR
−1
bc = Ṙab(R

T )bc yielding

ω̂ =

 0 cos(θ)φ′ + ψ′ sin(ψ)θ′ − cos(ψ) sin(θ)φ′

− cos(θ)φ′ − ψ′ 0 cos(ψ)θ′ + sin(θ) sin(ψ)φ′

cos(ψ) sin(θ)φ′ − sin(ψ)θ′ − cos(ψ)θ′ − sin(θ) sin(ψ)φ′ 0


(22)
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We can read from this matrix the corresponding entries of ~ω = (ω̂23, ω̂31, ω̂12)

ωx = cos(ψ)θ′ + sin(θ) sin(ψ)φ′ (23)

ωy =− sin(ψ)θ′ + cos(ψ) sin(θ)φ′ (24)

ωz = cos(θ)φ′ + ψ′ (25)

Now we can project ω on the e axes

~ω = ωaea = ωaRabeb = ωbeb (26)

So without thinking we type the appropriate expression into mathematica

ωb = ωaRab (27)

As a matrix (
ωx ωy ωz

)
=
(
ωx ωy ωz

) R

 (28)

yielding (
ωx ωy ωz

)
=

θ′ cos(φ) + ψ′ sin(θ) sin(φ)
θ′ sin(φ)− ψ′ sin(θ) cos(φ)

ψ′ cos(θ) + φ′

T

(29)

This is also clear from the picture given in class (with one extra line added). For instance
from Fig. 1, we have

ωZ = ψ̇ cos θ + φ̇ (30)
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REPRESENTING RIGID OBJECT MOTION
The same geometric argument for arm movement can be applied
to moving rigid objects, which have additional rotational degrees
of freedom around an axis in space (Fig. 1). In the following, we
derive a general tuning rule for rigid motion, discuss its basic
properties, and then contrast the results with concrete models of
visual receptive fields.

Description of rigid object motion
Arbitrary instantaneous motion of a rigid object can always be
described by a rotation plus a translation (Fig. 4), but given the
same physical motion, this description is ambiguous up to an
arbitrary parallel shift of the rotation axis. For example, transla-
tional velocity can always be aligned instantaneously with the
angular velocity to obtain a screw motion by passing the rotation
axis through the point of zero velocity in a perpendicular plane
(Fig. 4).

This ambiguity disappears when the rotation axis is always
required to pass through the same reference center in the object,
say, the center of mass. We assume that the reference center has
been chosen so that a rigid motion can be described uniquely by
a translational velocity and an angular velocity. We return to this
topic later.

The static position and orientation of a rigid object can be
specified by six independent parameters:

! x, y, z, !1 , !2 , !3", (24)

where x, y, z describe the position of the reference center of the
object with respect to a coordinate system fixed to the world, and
!1 , !2 , !3 are three angular variables that represent the object’s
orientation. The translational velocity of the object is:

v " ! ẋ , ẏ , ż ". (25)

The angular velocity ! # (#x , #y , #z)T in world coordinates is
always linearly related to the time derivatives of the orientation
variables "̇ # (!̇1 , !̇2 ,!̇3)T:

! " M"̇, (26)

where M is an invertible 3 $ 3 matrix that depends only on the
orientation (!1 , !2 , !3). For example, when Euler angles are used
to describe orientation (Fig. 5), we have:

!!1 , !2 , !3" " !!, $, %", (27)

and

M " ! cos $ 0 sin ! sin $
sin $ 0 %sin ! cos $

0 1 cos !
" , (28)

which is invertible as long as det M # sin ! & 0 (Goldstein, 1980).
Only the abstract linear relation in Equation 26 is needed in the

next section. The actual choice of (!1 , !2 , !3 ) is unimportant
here. Because the time derivatives of different sets of variables
are linearly related by a Jacobian matrix, Equation 26 always
holds regardless of the exact choice of the parameterization of
orientation (see also Appendix A on independence of the coor-
dinate system).

Tuning rule for rigid motion
Consider neuronal activity associated with motion of a rigid
three-dimensional object. Assume that the mean firing rate of a
neuron relative to baseline, with a possible time delay, is proportional
to the time derivative of a smooth function of the position and
orientation of the object in three-dimensional space. In other words:

f " f0 &
d
dt '! x, y, z, !1 , !2 , !3", (29)

where f is the firing rate, f0 is the baseline rate, and ' is an
arbitrary function of object position (x, y, z) and orientation (!1 ,
!2 , !3 ), as described in the preceding section. This equation is
analogous to Equation 1.

The exact form of function ' need not be specified here. It may
depend on both the receptive field properties of the cell and the
visual appearance of the object and its surroundings. This formu-
lation is quite general. For example, all the visual cues of the
object illustrated in Figure 1 are functions of the position and
orientation of the object that completely determine how light is
reflected from various surfaces, whether diffuse (uniform scatter-
ing in all directions) or specular (energy concentrated around the

Figure 4. Arbitrary motion of a rigid object can always be decomposed
instantaneously into a translation and a rotation, allowing arbitrary par-
allel shift of the rotation axis. The two examples shown here describe
identical physical motion. Parallel shift of rotation axis affects the trans-
lation velocity but not the angular velocity !.

Figure 5. Euler angles (!, $, %) describe an arbitrary orientation of a
rigid object with axes (X(, Y(, Z() with respect to a standard orientation
with axes (X, Y, Z).

Zhang and Sejnowski • A Theory of Neural Activity for 3-D Movement J. Neurosci., April 15, 1999, 19(8):3122–3145 3129

�̇

✓̇

 ̇
✓

 

Line of nodes

�

✓

Figure 1:

5



Problem 2. A Rolling Cone (Adapted from Geldstein Ch.5 #17)

A uniform right circular cone of height h, half-angle α, and density ρ rolls on its side without
slipping on a uniform horizontal plane. It returns to its original position in a time τ .

(a) Find the moment of inertia tensor for the body (or principal) axes centered on the tip.
I find

I0 =
3

5
Mh2

1
4

tan2 α + 1
1
4

tan2 α + 1
1
2

tan2 α

 (31)

(b) The cone is turning around the Z axis in a counterclockwise fashion as seen from above.
Consider the infinitesimal rotation at t = 0 (see figure) that the cone experiences – the
displacement of a point r on the cone’s body is

r → r + δθ × r , (32)

where δθ points along the Y axis. Describe qualitatively why Eq. (32) (with the
specified direction of ω) is what we mean by a rolling cone. Argue in particular that
ωz = 0 and write down the components of ω(t) in the lab frame.

(c) Determine the Euler angles describing the cone as a function of time. Take the Z axis
to point along the axle of the cone. Interpret φ̇ and the relation between ψ̇ and φ̇.

(d) Find the kinetic energy of the rolling cone. I find

T = Mh2

(
2π

τ

)2 [
3

40
(1 + 5 cos2 α)

]
(33)

(e) (Optional.) Write down the components of the L(t) in the lab frame. (You may wish
to check your results by computing T = 1

2
ω ·L)

(f) (Optional.) There are two ways to compute the kinetic energy. The first way uses the
expression

T =
1

2
ω · Itip · ω . (34)
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where Itip is the moment of inertia around the tip. The second way uses the moment
of inertia of the center of masss Icm

T =
1

2
ω · Icm · ω +

1

2
Mv2

cm . (35)

Show that these are equivalent to each other provided Icm and Itip are related by the
parallel axis theorem.
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(a) First I find the center of mass, the moment of inertia around the tip, and the moment
of inertia around the center of mass. The center of mass questions were not asked for, but
was asked for in other years so I include it here as example
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(b) In each time moment the cone pivots around the line of contact. Any rotation around
the Z axis would cause a skidding motion of the line of contact (see figure), which is not
allowed by the rolling without slipping constraint. Indeed the points on the line of contact
are not moving. If there was an ωZ then these points would move in time δt by an amount
δr = ωZδt ẑ × r. We must in general have ω parallel to the line of contact if the line of
contact is to be stationary. The line of contact rotates with by an angle of 2π over time τ
and this means

(ωX , ωY , ωZ) = ω0(− sin(2π/τ), cos(2π/τ), 0) (36)

The last step is to relate ω0 to τ . The point A moves in a circle of radius R⊥ = h cosα
over time τ and thus has velocity vA = 2πh cosα/τ . Since vA = |ω × rA| = ω0h sinα (see
figure and remember we are rotating around the line of contact), we have ω0 = 2π

τ
cotα,

leading to

ωX =
2π

τ
cotα (− sin(2πt/τ)) (37)

ωY =
2π

τ
cotα (cos(2πt/τ)) (38)

ωZ =0 (39)

Relating Wo to T
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(c) Having found the the angular velocity we can find the Euler angles. We have from the
previous excercise ωXωY

ωZ

 =

θ̇ cos(φ) + ψ̇ sin(θ) sin(φ)

θ̇ sin(φ)− ψ̇ sin(θ) cos(φ)

ψ̇ cos(θ) + φ̇

 (40)

where for example θ′ = dθ/dt, which should be matched with Eq. (37). So we need to solve
this equations for θ, φ, and ψ. Using geometry we see first that θ = π/2−α is constant and
thus

sin(θ) = cos(α) , (41)

cos(θ) = sin(α) . (42)

Thus we need

φ̇ =
2π

τ
(43)

ψ̇ =− 2π

τ

1

sinα
(44)

Or

φ =
2πt

τ
(45)

ψ =− 2πt

τ

1

sinα
(46)

Clearly we interpret φ = 2πt/τ as the azimuthal angle of the cone with respect to the
fixed axes. Relation between φ̇ and ψ̇ came from the rolling without slipping constraint

0 = dψ sin(α) + dφ (47)

The sign is correct, since of the cone advances in by dφ then the vector

dψ ≡ dt ψ̇ ≡ dt ψ̇ ez (48)

to point towards the apex of the cone. The figure below interprets this constraint relation
further
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,
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(d) We first write down the components of ω in the body basis. From the figure given in
the problem

ωX =0 (49)

ωY =ω0 sinα (50)

ωZ =− ω0 cosα (51)

with ω0 = (2π/τ) cotα. Evaluating

T =
1

2
IY Y ω

2
Y +

1

2
IZZω

2
Z (52)

where from part (a)

Iyy =
3

5
Mh2(1

4
tan2 α + 1) Izz =

3

5
Mh2(1

2
tan2 α) (53)

we find after minor algebra the result quoted in the problem

T =
3

40
Mh2

(
2π

τ

)2

(1 + 5 cos2 α) (54)

(e) To evaluate L in the lab frame we can simply evaluate L at t = 0 and then recognize
that L at a later time is simply a rotated version of this

L|t=0 = ezIzzωz + eyIyyωy (55)

We can then use geometry

ez = cos θez − sin θey = sinαez − cosαey (56)

ey = sin θez + cos θey = cosαez + sinαey (57)
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which after minor algebra gives

L|t=0 =
3

40
Mh2φ̇ tanα

[
(2 + 10 cos2 α)ey + (10 cos2 α− 2)ez

]
(58)

We can easily verify that with

ω = (0, ω0, 0) = (0, φ̇ cotα, 0) (59)

one recovers part (d)

T =
1

2
ω ·L =

3

40
Mh2φ̇2(1 + 5 cos2 α) (60)

To evaluate L(t) a later time t 6= 0 one simply makes the replacement,

ey → cos(2πt/τ)ey − sin(2πt/τ)ex (61)

in Eq. (55).
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Problem 3. Nutation of a Heavy Symmetric Top

Consider a heavy symmetric top with one end point fixed.

(a) Write down the Lagrangian from class. Carry out Routh’s procedure explicity by
Legendre transforming with respect to the the conserved momenta pψ and pφ. Write
down −R which serves as effective Lagrangian Leff for θ. Show that θ obeys the
equation of motion following from this effective Lagrangian

Iθ̈ = −∂Ueff

∂θ
, (62)

where

Ueff = mg` cos θ +
(pφ − pψ cos θ)2

2I1 sin2 θ
. (63)

Also show that

φ̇ =
pφ − pψ cos θ

I1 sin2(θ)
. (64)

(b) In class we analyzed the limit when gravitational torque is small to the rotational
kinetic energy, mg`/(p2

ψ/I1) � 1. Take pφ/pψ = r with 0 < r < 1. Within this
approximation (known as the fast top approximation), if the energy E is adjusted to
the minimum of the effective potential, the tip of the top will slowly precess with

θ̇ = 0 , and φ̇ =
mg`

pψ
. (65)

This is is shown in Fig. 2(d) which shows the trajectory of the tip of the top on the
sphere.

Now if the energy of the system is slightly larger than the minimum of Ueff , describe
qualitatively the motion in θ and φ. For what range in E do the first (a) and second
(b) figures describe the top’s motion? Explain. Work in the fast top approximation

(c) Using the fast top approximation outlined in (b), compute the period of θ oscillations
for a given energy E with E just larger than the minimum of Ueff . Determine the
precession rate φ̇(t), as a function of time. You should find

φ̇ =
mg`

pψ
− pψ
I1

A

sin2 θ0

cos(ω0t) (66)

where ω0 = pψ/I1, and θ0 is the mean value of the small δθ.
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CHAPTER 2. RIGID BODY DYNAMICS

˙Figure 2.8: � > 0
˙Figure 2.9: � has both

signs

Figure 2.10: at ✓2 we
˙ ˙have � = 0, ✓ = 0

Figure 2.11: No nu-
tation

˙ ˙with � > 0, whereas in Fig. 2.9 the precession is also in the backward direction, � < 0, for
˙part of the range of motion. In Fig. 2.10 the top has � = 0 at ✓2, before falling back down

˙in the potential and gaining � > 0 again. This figure also captures the case where we let go
˙ ˙of a top at ✓ = ✓2 � 0 that initially has  > 0 but � = 0. Finally in Fig. 2.11 we have the

situation where there is no nutation oscillation because the two angles coincide, ✓1 = ✓2.

51

(a) (b) (c) (d)

Figure 2: Motion of the tip of the heavy symmetric top
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Solution:

(a) The first part of this is directly out of lecture and we will not analyze it further here, see
page 6 of lecture.

(b) Now let us analyze the motion in the effective potential. The precession rate is determined
by φ̇

φ̇ =
pφ − pψ cos θ

I1 sin2(θ)
. (67)

And the effective potential is

Ueff = mg` cos θ +
(pφ − pψ cos θ)2

2I1 sin2 θ
. (68)

We set up some dimensionless variables as done in lecture, effectively setting

I1 = pψ = m = 1. (69)

Motivating the definitions

ḡ ≡ mg`

p2
ψ/I1

(70)

r ≡pφ
pψ

(71)

Ē ≡ E

p2
ψ/I1

(72)

So the effective potential and presssion rate read

φ̇ =
(r − cos θ)

sin2 θ
(73)

while the effective potential is

Ueff = ḡ cos(θ) +
(r − cos θ)2

sin2 θ
. (74)

Below we will work with u = cos θ and the effective potential for the variable u is

Ueff(u)

p2
ψ/I1

≡ Ū = ḡu+
(r − u)2

1− u2
(75)

The precession rate is
φ̇

pψ/I1

=
r − u
1− u2

(76)

In the fast top approximation ḡ � 1. Then in the zeroth approximation we can neglect
the ḡ term. Then a sketch of the potential for r > 0 versus u ≡ cos θ. is shown on the next
page. For u > r the precession rate is positive while for u < r the precession rate is negative.
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Consider first the motion when in the effective potential when E = E1. Then the motion
will oscillate between θ1 and θ2 as shown in the figure Fig. 3. When u = cos(θ) < r, the
precession rate φ̇ is positive (see Eq. (76)), while when cos(θ) the precession rate is negative.
Thus the motion in this case is the “loop-dee-loop” kind of behavior shown in Fig. 2(b). It is
not possible to see the behavior seen in Fig. 2(a) without going to the next order in gravity.

Now let us include gravity. Gravity is only important when the generalized forces,
−∂U (0)

eff /∂θ, from the zeroth order effective potential are small, i.e. near the minimum of
the zero-th order effective potential. Thus we expand the green region in detail. Near this
point u ' r and we can work with δu = u−r. Then the effective potential near the minimum
is approximately:

Ueff(δu) = ḡr + ḡδu+
δu2

2(1− r2)
(77)

Completing the square and notating for convenience 1−r2 ≡ s0, the effective potential takes
form

Ueff(δu) = ḡr − 1

2
ḡ2s0︸ ︷︷ ︸

const

+
(δu+ ḡs0)2

2s0

(78)

A plot of the effective potential in this region is shown by Fig. 3(b). Now if the energy is
greater than Ē > ḡr (as in Ē2) the motion is the “loop-dee-loop” type. If the energy Ē is
less then ḡr but greater than Uin (as in E3) then the motion will be of the type shown in
Fig. 2(a).

To summarize we find (in the original units) the loop-dee-loop behavior is for

E >
mg`I

pψ
cos θ0 , (79)

with cos θ0 = pφ/pψ. For E in the range

mg`I

pψ
cos θ0 > E >

mg`I

pψ
− 1

2

(mg`I)2

p2
ψ

sin2 θ0 . (80)

we see the Fig. 2(a) behavior.

(c) With a clear phyical understanding we can analyze the behavior. The original Lagrangian
for θ motion (technically this effective lagrangian is minus the Routhian Leff = −R)

Leff =
1

2
I1θ̇

2 + Ueff(θ) (81)

Considering the discussion of the previoius item we define a variable δu .

δu = cos(θ)− r (82)

When δu is positive the precession rate is negative, etc. Now

δu̇ = sin(θ)θ̇ '
√

1− r2θ̇ (83)
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So the kinetic term of the effective Lagrangian becomes

1

2
I1θ̇

2 =
1

2

I1

s0

δu̇2 (84)

So in our system of units

Leff

p2
ψ/I1

=
1

2

(
I2

1

p2
ψs0

)
δu̇2 − (δu+ s0ḡ)2

2s0

+ const (85)

Calculating the equation of motion of δu one finds(
I2

1

p2
ψ

)
δü = −(δu+ s0ḡ) (86)

This is the equation of a harmonic oscillator with fequency ω0 ≡ pψ/I1 oscillating around a
minimum s0ḡ. The solution

δu = −s0ḡ + A cos(ω0t) . (87)

So unravelling the definitions, we find cos θ and φ̇ explictly as a function of time

cos(θ)− cos(θ0) = − sin2 θ0
mg`I

p2
ψ

+ A cos(ω0t) (88)

φ̇ =
mg`

pψ
− pψ
I1

A

sin2 θ0

cos(ω0t) (89)

The amplitude A determines the energy of the oscillations. The top will do the loop-dee-loop
if A > sin2 θ0mg`I/p

2
ψ.

Note that the time average precession rate is simply the same as one would have if one
made no oscillations as derived in class

φ̇ =
mg`

pψ
(90)
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