
Problem 1. Torque on a box

Consider a solid box of mass m and dimension L,L, 2L (see figure).

(a) Compute all components of the moment of inertia tensor around center of mass.

(b) The box is rotated with constant angular frequency ω around its diagonal. At t = 0 the
box is oriented so that its principal axes e1, e2, e3 are aligned with laboratory x̂, ŷ, ẑ
as shown in the figure. Compute the components of angular momentum as a function
of time in the body basis and in the lab basis. For the lab basis you might want use the
fixed basis vectors e1, e2, e3 shown in the figure, which differ by a constant rotation
from x̂, ŷ, ẑ.

e1 =
1√
2

(x̂+ ŷ) (1)

e2 =e3 × e1 (2)

=
1√
3

(−x̂+ ŷ + ẑ) (3)

e3 =
1√
6

(x̂− ŷ + 2ẑ) (4)
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(c) Compute the components of the torque required to maintain the box’s rotational mo-
tion working with the rotating basis. Compute the components of the torque working
with the fixed basis.

(d) (Optional) Use the Lagrangian framework to compute the required torques in the body
frame.
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Solution:

(a) The principal axes are clearly the x, y, z coordinate system

Ixx =

∫
dm(y2 + z2) (5)

Iyy =

∫
dm(x2 + z2) (6)

Izz =

∫
dm(x2 + y2) (7)

Working through the first example

Ixx =
m

2L3
×
∫ L/2

−L/2
dx

∫ L/2

−L/2
dy

∫ L

−L
dz(y2 + z2) (8)

=
m

2L3

[
L×

(
2

3

L3

8

)
× 2L+ L× L× 2

3
L3

]
(9)

=mL2

[
1

12
+

1

3

]
(10)

=
5

12
mL2 (11)

The other integrals work out by analogy

Iyy = Ixx , (12)

while

Izz = mL2 2

12
. (13)

To summarize we have

I = I0

5
5

2

 I0 ≡
1

12
mL2 (14)

(b) Body Frame: Then the angular momentum components in the body axes are

La = Iabωb (15)

The angular velocity components in the body axes are (ω1, ω2, ω3) = ω0√
6
(1,−1, 2). So

we find L1

L2

L3

 =
I0ω0√

6

5
5

2

 1
−1
2

 =
I0ω0√

6

 5
−5
4

 (16)

Lab frame components physical description: First consider t = 0. Then at this
time then vector the body axes e1, e2, e3 are aligned with x̂, ŷ, ẑ:

L|t=0 = L1e1 + L2e2 + L3e3 = L1x̂ + L2ŷ + L3ẑ (17)
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Given the relation between the x̂, ŷ, ẑ vectors and e1, e2, e3x̂
ŷ
ẑ

 =


1√
2
− 1√

3
1√
6

1√
2

1√
3
− 1√

6

0 1√
3

√
2
3


e1

e2

e3

 (18)

The matrix here is the transpose of the relations given in Eq. (1)e1

e2

e3

 =


1√
2

1√
2

0

− 1√
3

1√
3

1√
3

1√
6
− 1√

6

√
2
3


x̂

ŷ
ẑ

 (19)

It is straightforward to show that

L|t=0 = I0ω
(
−
√

2e2 + 3e3

)
(20)

At a later time L simply precesses around the e3 axis

e2 → sin(ωt)e1 − cos(ωt)e2 (21)

leading to

L(t) = I0ω
(√

2 sin(ωt)e1 −
√

2 cos(ωt)e2 + 3e3

)
(22)

Lab frame components mathematical description: The angular momentum is

L = Laea(t) = La(t)ea (23)

So taking the dot product with eb we have

Lb(t) =Laea(t) · eb (24)

=LaRab(t) (25)

where
ea = Rabeb (26)

Rab takes the fixed basis ea to the principal axes ea.

Rab is conveniently expressed as a sequence of rotations parametrized by Euler angles,
φ, θ, ψ. First there is a rotation around the z axis

R1 ≡

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (27)

At t = 0, we have φ = 0. Later φ = ωt. Then a rotation around the new x axis by
angle −θ which is the angle between the ẑ axis and ω

cos θ =ẑ · ω̂ =
2√
6

(28)

sin θ =1/
√

3 (29)
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Here

R2 ≡ Rx(−θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 =


1 0 0

0
√

2
3
− 1√

3

0 1√
3

√
2
3

 (30)

Finally we have a rotation by ψ = −π/4 around the z-axis around the z axis

R3 ≡ Rz(−π/4) =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 (31)

The matrix then is
R = Rz(−π/4)Rx(−θ)Rz(ωt) (32)

So we have

(
L1 L2 L3

)
=
(
L1 L2 L3

) R3 ·R2 ·R1

 (33)

Only the last matrix is time dependent. Multiplying out these expression we have

L = I0ω
[√

2 sin(ωt)e1 −
√

2 cos(ωt)e2 + 3e3

]
(34)

This can also be obtained from geometrical considerations as done above.

(c) Body frame: The torque in the body frame is

τ =
dL

dt
(35)

=
dLa
dt
ea + ω ×L (36)

=ω ×L (37)

=
ω√
6

(e1 − e2 + 2e3)× I0ω√
6

(5e1 − 5e2 + 4e3) (38)

=I0ω
2 (e1 + e2) (39)

Lab Frame: Here we differentiate Eq. (34)

τ =
dL

dt
= I0ω

2
[√

2 cos(ωt)e1 +
√

2 sin(ωt)e2

]
(40)

The connection between the Lab Frame and body frame formulas can be realized by
examining the t = 0 case where we see clearly that

e1(t) + e2(t)|t=0 =
√

2e1 (41)

At a later time e1(t) +e2(t) is simply rotated by an angle φ around the e3 axis leaving

e1(t) + e2(t) =
√

2 (cos(ωt)e1 + sin(ωt)e2) (42)
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Problem 2. (Landau) Forced oscillations the easier complex way

(a) Determine the retarded green function of the following equations:

(i)
da

dt
− iω0a = 0 (43)

(ii)
ẍ+ ηẋ = 0 (44)

(b) Consider the driven harmonic oscillator

ẍ+ ω2
0x =

f(t)

m
(45)

Write it as an equation for a = ẋ+ iωx, and use the Green function of (a) to find the
specific solution, a(t).

(c) Suppose the force approaches zero for t → ±∞. If the oscillator was initially at rest,
determine the total work done by the external force. (You should use the complex
variable a(t) for this calculation.)

The fourier transform of a function is defined as

f̂(ω) ≡
∫ ∞
−∞

e+iωtf(t) . (46)

You should find that the energy absorbed is proportional to |f̂(ω0)|2.

(d) Consider the specific force

f(t) =

{
F0 0 < t < τ

0 otherwise
. (47)

Determine and plot the energy in the oscillator for t→∞ as a function of ω0τ .
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(a) (i) For the first equation we try to solve(
d

dt
− iω

)
G(t, t0) = δ(t− t0) (48)

It is a first order differential equation. For t > t0 the general solution is

G(t, t0) = Aeiωt (49)

For t < t0 the retarded Green function is zero:

G(t, t0) = 0 (50)

Then integrating Eq. (48) from t = t0 − ε to t0 + ε gives

G(t0 + ε, t0)−G(t0 − ε, t0)︸ ︷︷ ︸
=0

= 1 (51)

So we may adjust A so that this (Eq. (51)) is satisfied yielding

G(t, t0) = θ(t− t0)eiω0(t−t0) (52)

(ii) For the second equation we solve for t > t0 and find

G(t, t0) = A+Be−ηt (53)

while for t < 0 the green function is zero. Demanding continuity at t = 0 of these
two solutions we find we find

G(t, t0) = A(1− e−η(t−t0)) (54)

To determine the remaining constant we integrate from t0 − ε to t0 + ε yielding∫ t0+ε

t0−ε

(
d2G

dt2
+ η

d

dt
G

)
=

∫ t0+ε

t0−ε
δ(t− t0) (55)

yielding
∂tG(t, t0)|t0+ε

t0−ε + ηG(t, t0)|t0+ε
t0−ε = 1 (56)

So since G→ 0 as t→ t0 we find

∂tG(t, t0) = 1 . (57)

This fixes the coefficient of A in Eq. (54) establishing that

G(t, t0) =
1

η
(1− e−η(t−t0))θ(t− t0) . (58)
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(b) We write
d2x

dt2
+ ω2

0x =
d

dt
(ẋ+ iωx)− iω(ẋ+ iωx) (59)

Thus the equation of motion is

da

dt
− iωoa =

f(t)

m
, (60)

Using the Green function we find

a(t) =

∫ ∞
−∞

dt0 f(t0)G(t, t0) (61)

=eiω0t

∫ t

−∞
dt0 f(t0)e−iω0t0 (62)

(c) For the specific force we can integrate

a(t) = eiω0t
F0

m

∫ τ

0

dt0e
−iω0t0 (63)

yielding

a(t) = eiω0t
F

−iω0m
(1− e−iω0τ ) (64)

The energy is

E(t, τ) =
1

2
mẋ2 +

1

2
mω2

0x
2 (65)

=
m

2
|a(t, τ)|2 (66)

=
2F 2

0

mω2
0

sin2(ω0τ/2) (67)

In the limit of a short force ω0τ � 1 the impulse is F0τ . So, the velocity after the
impulse is v = (F0τ)/m. And the energy in the oscillator just after the impulse is
1/2mv2 = (F0τ)2/2m. Expanding our expression in Eq. (67) for ω0τ � 1, it gracefully
approaches (F0τ)2/2m.
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Problem 3. A quick review: motion in a magnetic field

Consider a homogeneous magnetic field B0 in the z direction, and a particle of charge q
moving in three dimensions in a harmonic potential well U = 1

2
mω2

0ρ
2, where ρ =

√
x2 + y2

is the distance from the z axis.

(a) Show that for a homogeneous magnetic field the vector potential A can be written

A =
1

2
B0(−y, x, 0) . (68)

(b) (Optional) Show that other ways to write the gauge field are

A = B0(−y, 0, 0) , (69)

or
A = B0(0, x, 0) . (70)

The choice written in part (a) is most convenient for this problem.

(c) Write down the Lagrangian for the particle in cylindrical cooridinates. It may be
notationally convenient in what follows to use the cyclotron frequency

ωB ≡
qB0

2m
. (71)

instead of the magnetic field.

(d) Determine all conserved quantities.

(e) Show that the equation of motion for ρ takes form

mρ̈ = −∂Veff

∂ρ
. (72)

and determine Veff .

(f) For different values of the parameters initial conditions (or conserved quantities), the
motion will be qualitatively different. Describe the range of parameters which corre-
spond to figures (a) , (b) (c), and (d) and (e).

Show, for instance, that case (c) is when pφ > 0 and

E⊥ > pφ
ω2

0

2ω2
B

(73)

with E⊥ = E − p2
z/2m.

Hint: Consider three cases pφ > 0, pφ < 0, and pφ = 0. Pay attention to the arrows in
the figures.
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(a) Just differentiate:
Bz = ∂xAy − ∂yAx = B0 (74)

(b) These are the same as part a. The two different forms for A differ by the gradient
of a scalar function

B0(−y, 0, 0) =
1

2
B0(−y, x, 0)−∇Λ (75)

with Λ = 1
2
B0xy

(c) We have

L =
1

2
m(ẋ2 + ẏ2 + ż2) +

q

c
v ·A− 1

2
mω2

0ρ
2 (76)

=
1

2
m(ẋ2 + ẏ2 + ż2) +

qB0

2c
(−ẋy + ẏx)− 1

2
mω2

0ρ
2 (77)

Now one can recognize xẏ − yẋ as being proportional to the angular momentum

(−ẋy + ẏx) = ρ2φ̇ (78)

So the final Lagrangian is

L =
1

2
m(ρ̇2 + ρ2φ̇2ż2) +mωBρ

2φ̇− 1

2
mω2

0ρ
2 (79)

(d) The momentum is conserved
pz (80)

The conserved quantities are the angular momentum

pφ =
∂L

∂φ̇
= mρ2φ̇+mρ2ωB (81)

We note that
φ̇ =

pφ
mρ2

− ωB (82)

The energy is conserved

h =pφφ̇+ pρρ̇− L (83)

=
1

2
m(ρ̇2 + ρ2φ̇2+) +

1

2
mω2

0ρ
2 (84)

We note that the energy is

h =
1

2
mρ̇2 +

(pφ −mρ2ωB)
2

2mρ2
+

1

2
mω2

0ρ
2 (85)

=
1

2
mρ̇2 − pφωB +

(
p2
φ

2mρ2
+

1

2
m(ω2

0 + ω2
B)ρ2

)
(86)

=
1

2
mρ̇2 − pφωB + Veff(ρ) (87)
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(e) The equation for ρ is

mρ̈ = mρφ̇2 + 2mωBρφ̇− ∂ρU(ρ) (88)

with U = 1
2
mω2

0ρ
2. Substituting Eq. (82) we find

mρ̈ =
p2
φ

mρ3
−mω2

Bρ− ∂ρU(ρ) (89)

=− Veff

∂ρ
(90)

where

Veff =
p2
φ

2mρ2
+

1

2
m(ω2

0 + ω2
B)ρ2 (91)

(f) We first define

E⊥ = E − p2
z

2m
(92)

and
E = E⊥ + pφωB (93)

The motion has

E =
1

2
mρ̇2 + Veff(ρ) (94)

If pφ is negative then
φ̇ < 0 (95)

This is the case in (d) .

If pφ is positive φ̇ could be positive or negative depending on ρ

φ̇ =
pφ
mρ2

− ωB (96)

It is helpful here to set m = 1 and to define

u =
1

ρ2
. (97)

Thus
φ̇ = pφu− ωB (98)

So, the system will be switch from φ̇ positive to negative for u less than

u < ucrit =
ωB
pφ

(99)

or

ρ >

√
pφ
ωB

(100)

In order to reach this value of ρ the energy needs to be sufficiently large.
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The turning points in “u” space is found by setting ρ̇ = 0

E =
p2
φ

2
u+

1

2

(ω2
0 + ω2

B)

u
(101)

The two roots of this equation are

u± =
E ±

√
E2 − p2

φ(ω2
B + ω2

0)

p2
φ

(102)

We immediately conclude that the lowest possible E (which corresponds to a circular orbit
where u+ = u−) is

Emin
⊥ = pφ

√
ω2
B + ω2

0 − pφωB (103)

The relevant question to ask is wether u− (the greatest ρ) satisfies u− < ωB/pφ. If this
is the case we will have φ̇ negative corresponding to case (c). Setting

E −
√
E2 − p2

φ(ω2
B + ω2

0)

p2
φ

=
ωB
pφ

(104)

and solving for the energy we see that

Ecrit = pφωB

(
1 +

ω2
0

2ω2
B

)
(105)

So we have

Ecrit
⊥ =

pφω
2
0

2ωB
(106)

To summarize we have
Emin
⊥ < E < Ecrit

⊥ (107)

Then we have case (a). Case (b) is E = Ecrit
⊥ and (c) is E > Ecrit

⊥ .

Finally we note that case (e) the particle goes right through the center. Looking at the
effective potential at small ρ, we see that

Veff ∝
p2
φ

2mρ2
(108)

Thus it is only possible to pass through the origin with finite energy if pφ = 0.
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