
Problem 1. A non-linear oscillator

An oscillator of mass m and resonant frequency ω0 has a damping force FD = −βv3 with
β > 0. The motion is initialized with amplitude a0 and no velocity at time t = 0.

(a) Define suitable dimensionless variables so that a dimensionless version of the equation
reads:

d2x

dt
2 + x+ ε

(
dx̄

dt̄

)3

= 0 (1)

What is the condition on β that the non-linear term may be considered small?

(b) If the oscillator starts at t̄ = 0 with x̄ = 1 with dx̄/dt̄ = 0, use secular perturbation the-
ory to determine approximate behavior of x̄(t̄). Show in particular that the amplitude
decreases as t̄−1/2 at late times.

(c) (Optional) Use Mathematica or other program to determine the exact numerical solu-
tion1, and plot the exact and approximate solution for ε = 0.3 up to a time t̄ = 160.
The picture I get is shown below.

1Look up NDSolve and figure it out. I find the following Mathematica advice (parts I and II) by my
friend and colleague Mark Alford useful.

1

 http://www.physics.wustl.edu/alford/mathematica/mathematica_intro.html 
http://www.physics.wustl.edu/alford/mathematica/mathematica_techniques.html
http://www.physics.wustl.edu/alford/
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Solution:

(a) The initial condition is has scale a0 which defines a length scale. We set m = ω0 =
a0 = 1 this yields

x̄ =x/a0 (2)

t̄ =ω0t (3)

v̄ =v/(ω0a0) (4)

The original equation is
mẍ+mω2

0x+ βẋ3 = 0 (5)

which after dividing by mω2
0a0 becomes

d2x

dt
2 + x+ ε

(
dx̄

dt̄

)3

= 0 (6)

with

ε =
β(ω0a0)3

mω2
0a0

. (7)

This is the ratio of the viscous forces β(ω0a0)3 to spring forces mω2
0a0.

(b) We try a specific form for the zeroth order solution:

x(0)(t) = A(t) cos(−ω0t+ ϕ(t)) (8)

where ω0 = 1 in practice. We keep it around for clarity. For simplicity we notate

Ω(t) = −ω0t+ ϕ(t) (9)

The full solution is
x(t) = x(0)(t) + x(1)(t) (10)

Substituting into the equations we find

ẍ(0) + ω2
0x

(0) = 2Ȧω0 sin(Ω) + 2Aω0ϕ̇ cos(Ω) +O(Ä, ϕ̈) (11)

Similarly for the nonlinear term

εv3(t) =ε(Aω0sin(−ω0t+ ϕ))3 +O(ε2) (12)

'εA
3ω3

0

−8i

(
eiΩ − e−iΩ

)3
(13)

=− εA3ω3
0

4
(sin(3Ω)− 3 sin(Ω)) (14)

So the equation of motion reads

ẍ(1) + ω2
0x

(1) + sin(Ω)

[
2Ȧω0 +

3

4
εA3ω3

0

]
+ cos(Ω) [2Aω0ϕ̇]− A2ω3

0

4
sin(3Ω) = 0 (15)
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In order to ovoid secular term we choose (recalling that ω0)

dA

dt
=− 3

8
εA3 (16)

dϕ

dt
=0 (17)

Solving the first equation is easily solved with the boundary condition that A = 1 at
t = 0:

dA

A3
= −3

8
εdt . (18)

Integrating we find

A =
1

(1 + 3ε
4
t)1/2

(19)

The phase ϕ is constant, and this constant must be set to 0 in order that there is no
initial velocity at t = 0. Thus our final solution is

x(0) =
1

(1 + 3ε
4
t)1/2

cos(t) (20)

A comparison between the numerical solution (the solid red line) and the analytical
form (Eq. (??)) is given in Fig. 1
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Problem 2. (Likharev) An effective mass

For a system with the following Lagrangian: Consider an oscillator with generalized co-
ordinate q and resonant frequency ω0 with an effective mass which is weakly coordinate-
dependent meff = m(1 + εq2) where m is a constant2 . The lagrangian is

L =
1

2
meff(q)q̇2 − 1

2
mω2

0q
2 (21)

Calculate the frequency of oscillations using secular perturbation theory, and from an inte-
gral given in class for the period of one dimensional systems (see “Motion of 1d systems”
online). Assume that the amplitude of the oscillations is A and that εA2 � 1.

You should find by both methods that to first order in εA2

ω ' ω0

(
1− A2ε

4

)
. (22)

Give a qualitative explanation for why the shift is negative.

2Technically m has units, [m] = kg ·m2 and q is dimensionless
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Solution:
The Lagrangian is

L =
1

2
meff(q)q̇2 − 1

2
mω2

0q
2 (23)

where meff(q) = m(1 + εq2). The equation of motion is

∂t(m(1 + εq2)∂tq) = −mω2
0q +mεqq̇2 (24)

Here we write the zero-th order solution as

q(0)(t) = A(t) cos(ω0t+ ϕ(t)) . (25)

For a steady state solution (such as this) we are can consider a form with A = const and
ϕ = ∆ω t. Or simply

q(0)(t) = A cos(ωt) , (26)

with ω = ω0 + ∆ω to be adjusted so that no secular terms appear. The equation of motion
without approximation can be writen:

q̈ + ω2q + ε
[
∂t(q

2∂tq)− qq̇2
]

+ (ω2
0 − ω2)q = 0 (27)

Approximating ω2
0 − ω2 ' −2ω0∆ − ω ' 2ω∆ω at first order in ε . The mass term is also

approximated

∂tq
2∂tq − q(∂tq)2 =

A3

8
∂t
[
(eiωt + e−iωt)2∂t(e

iωt + e−iωt)
]

− A3

8

[
(eiωt + e−iωt)(∂t(e

iωt + e−iωt))2
]

(28)

Or

∂tq
2∂tq − q(∂tq)2 = −A

3ω2

2
cos(3ωt)− A3

2
ω2 cos(ωt) (29)

The cos(3ωt) term is not in resonance with the oscillator, and in the zeroth approximation
can be neglected. It will of course be necessary in a first approxiamation to keep this term;
it will fix q(1). Then we find that the equation of motion:

d2q(1)

dt2
+ ω2q(1) −

[
2ω0∆ω +

ω2A2

2
ε

]
︸ ︷︷ ︸

secular−term

q(0) − A2

2
ω2ε cos(3ωt) = 0 (30)

Leading to a frequency shift of

∆ω = −A
2ε

4
ω0 (31)

in order to cancel the secular term. In determining this shift we have ignored the difference
between ω0 and ω since the whole correction is already first order in ε.

Of course the frequency shift is negative, as the mass shift is ∝ εq2, resulting in an
increase in mass on average. This lowers the frequency.
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We can also use the first order integral to determine the period. Recall that for a
Lagrangian

L =
1

2
m(q)q̇2 − U(q) , (32)

the first integral is

E =
1

2
m(q)2 + U(q) . (33)

This may be inverted, determining the time evolution of the system:

t− t0 =

∫ q

q0

dq

(
m(q)

2(E − U(q))

)1/2

(34)

The turning points happens when

E = U(q) =
1

2
mω2

0q
2 (35)

or

q± = ±

√
2E

mω2
0

(36)

Then we may expand the mass√
m(q) =

√
m(1 + εq2)1/2 '

√
m(1 +

1

2
εq2) (37)

Leading to an approximate expression for the period

τ = 2

∫ q+

q−

dq (
√
m/2)

1√
E − U(q)

+ 2

∫ q+

q−

dq (
√
m/2)

εq2

2

1√
E − U(q)

(38)

Defining a dimensionless integration variable

u =
q√

2E/mω2
0

≡ q

A
(39)

which is the amplitude in units of the maximum we find

ω0τ = 2

∫ 1

−1

du
1√

1− u2
+ A2 ε

2
2

∫ 1

−1

du
u2

√
1− u2

(40)

The remaining integrals can be done using the β function (or gamma function) yielding 2π
and π/2 respectively for a total shift

τ =
2π

ω0

(1 +
A2ε

4
) (41)

The (angular) frequency in agreement with before

ω =
2π

τ
' ω0(1− A2ε

4
+ . . .) (42)
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Problem 3. Anharmonic oscillations to quadratic order

Consider the oscillator with energy E in the potential

U =
1

2
mω2

0q
2 +

c

3
q3 (43)

where the anharmonic contribution is small. The oscillator is at the top of its arc at t = 0.
We will determine an approximation to q(t)

q(t) = q(0) + q(1) + q(2) (44)

to second order in c.

(a) Choose an appropriate set of units so that the equation of motion can be written with

d2q̄

dt̄2
+ q̄ + c̄ q̄2 = 0 , (45)

with initial condition q̄(0) = 1. q̄, c̄ and t̄ are dimensionless versions of q, c and t. To
lighten the notation we will drop the bars for the remainder of this problem. c̄ is small
in this problem; what does this imply for c?

(b) Solve for q(0), q(1), and q(2). You should find to order c2

q(t) = a cos(ωt)− a2c

2
+
a2c

6
cos(2ωt) +

a3c2

48
cos(3ωt) (46)

with

ω = 1− 5c2

12
+ . . . (47)

and amplitude a adjusted to reproduce the initial condition q(0) = 1 :

1 = a− a2

2
c+

a2c

6
+
a3c2

48
(48)

or

a(c) = 1 +
1

3
c+

29

144
c2 + . . . (49)

Hint: A general approach is to try a zero-th order ansatz of the form

q(0) = A(t) cos(−ω0t+ ϕ(t)) (50)

and this will always work. Here you could try a more restricted form, by making an
anasatz for A(t) and an ansatz for ϕ(t), and write the zeroth order solution as3

q(0) = A cos(ωt) (51)

3In this ansatz we treat A(t) as a constant, and write ϕ(t) = −∆ωt. So the frequency is ω = ω0 + ∆ω.
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Figure 2: Analytical perturbative solution (yellow curve) compared to the numerical solution
(blue curve) versus time for q(t). Reading the graphs like words in a book, the comparison
is for c = 0.2, 0.3, 0.4 and 0.55 (so c = 0.3 is the top right graph).

where A and ω are adjusted order by order to remove secular terms:

A =1 + λA1 + λ2A2 + . . . (52)

ω =1 + λω1 + λ2ω2 + . . . (53)

(Here λ is a book keeping parameter which denotes the order in c̄, i.e. λ2 denotes a
term of order c̄2. We will set λ = 1 at the end.) One could hope that this ansatz
will work here since the energy is fixed, and the period of the non-linear oscillations is
also fixed. If the ansatz in Eq. (12) was not general enough, then there will be secular
terms which can’t be captured with this form, and then you would go back to the more
general approach in Eq. (11).

(c) The graph in Fig 2 compares solution in Eq. (7) to a numerical solution. Explain why
the perturbative solution fails qualitatively for c = 0.55.
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(d) The motion is periodic with period T . Qualitatively sketch the power spectrum, i.e. if
q(t) is expanded in a Fourier series, q(t) =

∑
n qne

−i2πnt/T , sketch |qn|2 versus n. How
does increasing the non-linearity c change this spectrum?
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Solution

(a)
mq̈ +mω2

0q + cq2 = 0 (54)

we can choose our units for mass, time, space independently: m = 1, ω0 = 1, q0 = 1.
This amounts to defining

q̄ = q/q0 t̄ = ω0t (55)

Then the equation of motion factors

mω2
0q0

[
¨̄q + q̄ + c̄q̄2

]
= 0 (56)

where c̄ = cq2
0/(mω

2
0q0), is the typical size of the ratio of the anharmonic forces to the

harmonic forces. We of course must have c̄ � 1 for perturbation theory to be valid.
We will dispense with the bars below.

(b) This is a classic rotation wave setup. We write

q = q(0) + λq(1) + λ2q(2) (57)

where λ is a formal parameter which counts powers of c. We will set λ = 1 at the end.

We write q(0) = A cos(ωt), where

ω = 1 + λω1 + λ2ω2 + . . . (58)

the frequency is also adjusted at each order. The amplitude is also adjusted

A = 1 + λA1 + λ2A2 (59)

to match our required initial condition, q(0) = 1.

Then the equation of motion is (without approximation) can be written

q̈ + ω2q + (1− ω2)q + cλq2 = 0 (60)

Here we have anticipated that the oscillation frequency will not be unity, and regrouped
terms.

The frequency terms are approximated

(1− ω2) ' −2λω1 + λ2(−2ω2 + ω2
1) + . . . (61)

The non-linear term is approximated

cλq2 = λcλ(q(0))2 + cλ2(2q(0)q(1)) + . . . (62)

Of course we have

q̈ + ω2q = (q̈(0) + ω2q(0)) + λ(q̈(1) + ω2q(1)) + λ2(q̈(2) + ω2q(2)) + . . . (63)
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Then at first order in c (or λ) we have

λq̈(1) + ω2λq(1) − 2λω1q
(0) + cλ(q(0))2 = 0 . (64)

So since

(q(0))2 = A2 cos2(ωt) =
A2

2
+
A2

2
cos(2ωt) (65)

we have at first order

q̈(1) + ω2q(1) +−2ω1A cos(ωt)︸ ︷︷ ︸
secular term

+cA2

(
1

2
+

1

2
cos(2ωt)

)
(66)

So we require that the secular term be zero yielding

ω1 = 0 (67)

Then q(1) is easily solved

q(1) = −cA
2

2ω2
− cA2 cos(2ωt)

−(2ω)2 + ω2
= −cA

2

2ω2
+
cA2

6ω2
cos(2ωt) (68)

The full solution takes the form at first order takes the form

q = A cos(ωt)− cA2

2ω2
+
cA2

6ω2
cos(2ωt) (69)

The second order second order

λ2q̈(2) + λ2ω2q(2) + λ2(−2ω2 + ω2
1)q + cλ2(2q(0)q(1)) = 0 . (70)

Using the fact that ω1 = 0 we have

q̈(2) + ω2q(2) − 2ω2q
(0) + c(2q(0)q(1)) = 0 . (71)

Tackling the product

2cq(0)q(1) = −c
2A3

ω2
cos(ωt) +

c2A3

3ω2
cos(ωt) cos(2ωt) (72)

Then last term is simplified using

cos(ωt) cos(2ωt) =
1

2
cos(3ω) +

1

2
cos(ωt) (73)

for a total equation of motion of

q̈(2) + ω2q(2) + (−2ω2A+
c2A3

ω2
− c2A3

6ω2
)︸ ︷︷ ︸

secular term

cos(ωt)− c2A3

6ω2
cos(3ωt) = 0 (74)
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Requiring that the secular term is absent at second order yields

ω2 = −5c2A2

12ω2
' −5c2

12
+O(c3) (75)

where in the last step we have used that at zeroth order A = 1 and ω = 1. The second
order correction is

q(2) =
−c2A3

6ω2

cos(3ωt)

−(3ω)2 + ω2
=
c2A3

48ω2
cos(3ωt) (76)

To summarize we find

q(t) = A cos(ωt)− cA2

2ω2
+
cA

6ω2
A cos(2ωt) +

1

48

(
cA

ω2

)2

A cos(3ωt) (77)

with

ω = 1− 5c2

12
(78)

as our approximate solution. The amplitude A should be adjusted to match the initial
condition. In this case we have q(0) = 1, leading to

1 = A− A2

2
c+

A2c

6
+
A3c2

48
+O(c3) (79)

This may be solved iteratively for A

A(c) = 1 +
1

3
c+

29

144
c2 + . . . (80)

It is also fine to exapand out the amplitudes in Eq. (??) in powers of c. It is however
not ok to expand cos((1 − 5c2/12)t) in powers of c since c2t is of order unity at late
times.

(c) Fig. 2, shows the analytical solution (yellow curve) together with the numerical curve
(blue curve) for c = 0.2, 0.3, 0.4, 0.55. Clearly it works well for c ' 0.3. But it fails
qualitatively for c = 0.55 (except at short times).

What is going on here is the following. If the energy is low enough, then the particle
bounces around in the potential, and the approximate solution works well for a long
period of time. However, when the energy gets sufficiently large, the particle can make
it over the barrier and escape to infinity. This is shown in Fig. ??. The approximate
solution in this case can not be expected to work except for a very short period of
time. This is what is seen in Fig. 2(d).

(d) The power spectrum is very characteristic. Each higher harmonic for weakly nonlinear
oscillations carries less and less power.

|q1|2 =|q−1|2 ∼ 1 (81)

|q2|2 =|q−2|2 ∼ c2 (82)

|q3|2 =|q−3|2 ∼ (c2)2 (83)

As the non-linearities increase, the higher harmonics become more important.
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Figure 3: Analytical solution (yellow curve) compared to the numerical solution (blue curve)
versus time. The comparison is for c = 0.2, 0.3, 0.4, 0.55 (read like a book).
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Figure 4: Potential (curve) and energy of particle (line) for c = 0.5
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