1.2 The action and the Euler Lagrange equations

- The action

$$
\begin{equation*}
S[\boldsymbol{r}(t)]=\int_{t_{1}}^{t_{2}} d t L(\boldsymbol{r}, \dot{\boldsymbol{r}}, t) \tag{1.31}
\end{equation*}
$$

takes an arbitrary path $\boldsymbol{r}(t)$ (which may not satisfy the EOM) and returns a number. It is called a functional.

- The action principle says that the path $\boldsymbol{r}(t)$ that satisfies the EOM (sometimes called the the classical or "on-shell" path) is an extremum the action". This means that if we replace the on-shell path $\boldsymbol{r}(t)$ with

$$
\begin{equation*}
\boldsymbol{r}(t) \rightarrow \boldsymbol{r}(t)+\delta \boldsymbol{r}(t) \tag{1.32}
\end{equation*}
$$

for an arbitrary (small) function $\delta \boldsymbol{r}(t)$ that vanishes near t_{1} and t_{2} then the action is unchanged

$$
\begin{equation*}
S[\boldsymbol{r}(t)+\delta \boldsymbol{r}(t)]=S[\boldsymbol{r}(t)] \quad \text { when } \boldsymbol{r}(t) \text { is "on-shell", i.e. satisfies the EOM } \tag{1.33}
\end{equation*}
$$

- Generally we define

$$
\begin{equation*}
\delta S[\boldsymbol{r}(t), \delta \boldsymbol{r}(t)] \equiv S[\boldsymbol{r}(t)+\delta \boldsymbol{r}(t)]-S[\boldsymbol{r}(t)] \tag{1.34}
\end{equation*}
$$

and note that $\delta S[\boldsymbol{r}, \delta \boldsymbol{r}]$ depends on both the path and the variation. The requirement that $\delta S=0$ determines the equation of motion. You should be able to prove that when $\delta S=0$ for an arbitrary variation, the equations of motion are (in 1 d)

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=\frac{\partial L}{\partial x} \tag{1.35}
\end{equation*}
$$

- For a general set of coordinates $q^{A}=1 \ldots N$ the equations of motion take the same form:

$$
\begin{equation*}
\delta S \equiv S[q(t)+\delta q(t)]-S[q(t)]=0 \tag{1.36}
\end{equation*}
$$

to first order in an arbitrary $\delta q(t)$. This leads to N equations of motion

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{A}}=\frac{\partial L}{\partial q^{A}} \quad A=1 \ldots N \tag{1.37}
\end{equation*}
$$

we call

$$
\begin{align*}
p_{A} & =\frac{\partial L}{\partial \dot{q}^{A}} \equiv \text { the canonical momentum conjugate to } q^{A} \tag{1.38}\\
F_{A} & =\frac{\partial L}{\partial q^{A}} \equiv \text { the generalized force associated with } q^{A} \tag{1.39}
\end{align*}
$$

- If a coordinate q^{A} does not appear in the Lagrangian (but of course \dot{q}^{A} does or it wouldn't appear at all), the variable is called cyclic. For a cyclic coordinate we have from the Euler Lagrange equations (Eq. (1.37))

$$
\begin{equation*}
\frac{d p_{A}}{d t}=0 \tag{1.40}
\end{equation*}
$$

i.e. p_{A} is a constant of the motion.

The hamiltonian function

- The hamiltonian (or energy) function (sometimes called the "first integral") is

$$
\begin{equation*}
h(q, \dot{q}, t)=p \dot{q}-L(q, \dot{q}, t)=\frac{\partial L}{\partial \dot{q}} \dot{q}-L(q, \dot{q}, t) \tag{1.41}
\end{equation*}
$$

and obey the equation of motion

$$
\begin{equation*}
\frac{d h}{d t}=-\frac{\partial L}{\partial t} \tag{1.42}
\end{equation*}
$$

$h(q, \dot{q}, t)$ is therefore constant if L does not depend explicitly on time.

[^0]- If more then one coordinate is involved then

$$
\begin{align*}
h\left(q^{A}, \dot{q}^{A}, t\right) & =\sum_{A} p_{A} \dot{q}^{A}-L \tag{1.43}\\
& =\frac{\partial L}{\partial \dot{q}^{A}} \dot{q}^{A}-L \tag{1.44}
\end{align*}
$$

where we have and will from now on follow the summation convention, where repeated indices are summed over.

- We will distinguish the hamiltonian function $h(q, \dot{q}, t)$, which is a function of q, \dot{q}, and t, from the Hamiltonian $H(p, q, t)$ which is a function of q and p and t through the Legendre transform (more later). Thus $p_{A}(q, \dot{q}, t)$ in the hamiltonian function (Eq. (1.43)) is a function of the q and the \dot{q}, while in the Hamiltonian the \dot{q} is a function of q and p.
- For a rather general Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} a_{i j}(q) \dot{q}^{i} \dot{q}^{j}+b_{i}(q) \dot{q}^{i}-U(q) \tag{1.45}
\end{equation*}
$$

(which is the form of the Lagrangian for a particle in a magnetic field or gravity) the hamiltonian function is

$$
\begin{equation*}
h(\dot{q}, q, t)=\frac{1}{2} a_{i j}(q) \dot{q}^{i} \dot{q}^{j}+U(q) \tag{1.46}
\end{equation*}
$$

The fact that the hamiltonian function is independent of b_{i} is closely related to the fact that magnetic fields do no work.

The period of one dimensional motion

- For one dimensional Lagrangian's of the form

$$
\begin{equation*}
L=\frac{1}{2} m(q) \dot{q}^{2}-V_{\mathrm{eff}}(q) \tag{1.47}
\end{equation*}
$$

The first integral is

$$
\begin{equation*}
E=\frac{1}{2} m(q) \dot{q}^{2}+V_{\mathrm{eff}}(q) \tag{1.48}
\end{equation*}
$$

You should be able to show that the this first integral equation can be used to determine $q(t)$ implicitly. Integrating from $\left(t_{0}, q_{0}\right)$ to $(t, q(t))$ yields

$$
\begin{equation*}
\pm \int_{q_{0}}^{q(t)} d q\left(\frac{m(q)}{2\left(E-V_{\mathrm{eff}}(q)\right)}\right)^{1 / 2}=t-t_{0} \tag{1.49}
\end{equation*}
$$

which, when inverted, gives $q(t)$. The plus sign is when q is increasing in time, while the minus sign is when $q(t)$ is decreasing in time

- In a typical case the potential $V_{\text {eff }}(q)$ and energy E is shown below

For the specified energy, the motion is unbounded for $q>q_{c}$, and oscillates between when $q_{A}<q<q_{B}$. q_{A}, q_{B} and q_{C} are called turning points. The period $\mathcal{T}(E)$ is the time it takes to go from q_{A} to q_{B} and back. Thus half a period $\mathcal{T}(E) / 2$ is the time it takes to go from q_{A} to q_{B} or

$$
\begin{equation*}
\frac{\mathcal{T}(E)}{2}=\int_{q_{A}}^{q_{B}} d q\left(\frac{m(q)}{2\left(E-V_{\mathrm{eff}}(q)\right)}\right)^{1 / 2} \tag{1.50}
\end{equation*}
$$

[^0]: ${ }^{1}$ Sometimes for clarity we will put a bar, e.g., $\underline{\boldsymbol{r}}(t)$ to indicate that this path is on-shell, i.e. that it satisfies the EOM

