1.2 The action and the Euler Lagrange equations

e The action

S[r(t)] = /tz dtL(r, 1) (1.31)

t1

takes an arbitrary path r(¢) (which may not satisfy the EOM) and returns a number. It is called a functional.

e The action principle says that the path r(t) that satisfies the EOM (sometimes called the the classical
or “on-shell” path) is an extremum the action®. This means that if we replace the on-shell path 7(t) with

r(t) = r(t) + or(t) (1.32)
for an arbitrary (small) function d7(t) that vanishes near ¢; and ¢o then the action is unchanged
S[r(t) + or(t)] = S[r(t)] when r(¢) is “on-shell”, i.e. satisfies the EOM (1.33)
e Generally we define
0S[r(t),dr(t)] = Sir(t) + dr(t)] — S[r(t)] (1.34)

and note that §S[r, §r] depends on both the path and the variation. The requirement that §5 = 0 determines
the equation of motion. You should be able to prove that when §5 = 0 for an arbitrary variation, the
equations of motion are (in 1d)

d oL 0L
o 1.35
dt 0z  Ox ( )
e For a general set of coordinates ¢* = 1... N the equations of motion take the same form:
65 = S[q(t) + 6q(t)] = Sla(t)] =0 (1.36)
to first order in an arbitrary dq(t). This leads to N equations of motion
d 0L oL
—_—— = — A=1...N 1.37
dt 0¢4  Og4 (1.37)
we call
oL . . A
DA =94 = the canonical momentum conjugate to ¢ (1.38)
oL . . A
Fy :w = the generalized force associated with ¢ (1.39)

e If a coordinate ¢ does not appear in the Lagrangian (but of course ¢* does or it wouldn’t appear
at all), the variable is called cyclic. For a cyclic coordinate we have from the Euler Lagrange equations
(Eq. (1.37)) .

PA
— =0 1.40
o (1.40)

i.e. pa is a constant of the motion.

The hamiltonian function

e The hamiltonian (or energy) function (sometimes called the “first integral”) is

. . . OL . .
h(q,4.t) = pi— L(q,4,t) = 200 L(g,4,1) (1.41)
and obey the equation of motion
dh oL
— = —— 1.42
dt ot ( )

h(q,q,t) is therefore constant if L does not depend explicitly on time.

1Sometimes for clarity we will put a bar, e.g., (¢) to indicate that this path is on-shell, i.e. that it satisfies the EOM
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If more then one coordinate is involved then

hgt ¢ t) =Y pag* — L (1.43)
A
oL .

where we have and will from now on follow the summation convention, where repeated indices are
summed over.

We will distinguish the hamiltonian function h(q,q,t), which is a function of ¢, ¢, and ¢, from the
Hamiltonian H(p, ¢,t) which is a function of ¢ and p and ¢ through the Legendre transform (more
later). Thus pa(g, ¢,t) in the hamiltonian function (Eq. (1.43)) is a function of the ¢ and the ¢, while
in the Hamiltonian the ¢ is a function of ¢ and p.

For a rather general Lagrangian

L= %aij(Q) i'¢ +bi(q)q — Ulq), (1.45)

(which is the form of the Lagrangian for a particle in a magnetic field or gravity) the hamiltonian
function is

hd.0.1) = Hasy(0) §'6 +U(a) (1.46)

The fact that the hamiltonian function is independent of b; is closely related to the fact that magnetic
fields do no work.

period of one dimensional motion

For one dimensional Lagrangian’s of the form

L= Jmla) &~ Venla) (147

The first integral is

B = 2m() ¢ + Vea(a) (1.48)

You should be able to show that the this first integral equation can be used to determine ¢(t) implicitly.
Integrating from (to, qo) to (¢, q(t)) yields

+ /q:(t) dq (M)W — (1.49)

which, when inverted, gives ¢(t). The plus sign is when ¢ is increasing in time, while the minus sign is
when ¢(¢) is decreasing in time

In a typical case the potential Veg(q) and energy E is shown below



R,

For the specified energy, the motion is unbounded for g > ¢., and oscillates between when ¢4 < ¢ < ¢p.
qa,qp and g are called turning points. The period T (E) is the time it takes to go from ¢4 to ¢p and
back. Thus half a period T(FE)/2 is the time it takes to go from g4 to gp or
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