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1.2 The action and the Euler Lagrange equations

• The action

S[r(t)] =

∫ t2

t1

dtL(r, ṙ, t) (1.31)

takes an arbitrary path r(t) (which may not satisfy the EOM) and returns a number. It is called a functional.

• The action principle says that the path r(t) that satisfies the EOM (sometimes called the the classical
or “on-shell” path) is an extremum the action1. This means that if we replace the on-shell path r(t) with

r(t)→ r(t) + δr(t) (1.32)

for an arbitrary (small) function δr(t) that vanishes near t1 and t2 then the action is unchanged

S[r(t) + δr(t)] = S[r(t)] when r(t) is “on-shell”, i.e. satisfies the EOM (1.33)

• Generally we define
δS[r(t), δr(t)] ≡ S[r(t) + δr(t)]− S[r(t)] (1.34)

and note that δS[r, δr] depends on both the path and the variation. The requirement that δS = 0 determines
the equation of motion. You should be able to prove that when δS = 0 for an arbitrary variation, the
equations of motion are (in 1d)

d

dt

∂L

∂ẋ
=
∂L

∂x
(1.35)

• For a general set of coordinates qA = 1 . . . N the equations of motion take the same form:

δS ≡ S[q(t) + δq(t)]− S[q(t)] = 0 (1.36)

to first order in an arbitrary δq(t). This leads to N equations of motion

d

dt

∂L

∂q̇A
=

∂L

∂qA
A = 1 . . . N (1.37)

we call

pA =
∂L

∂q̇A
≡ the canonical momentum conjugate to qA (1.38)

FA =
∂L

∂qA
≡ the generalized force associated with qA (1.39)

• If a coordinate qA does not appear in the Lagrangian (but of course q̇A does or it wouldn’t appear
at all), the variable is called cyclic. For a cyclic coordinate we have from the Euler Lagrange equations
(Eq. (1.37))

dpA
dt

= 0 (1.40)

i.e. pA is a constant of the motion.

The hamiltonian function

• The hamiltonian (or energy) function (sometimes called the “first integral”) is

h(q, q̇, t) = pq̇ − L(q, q̇, t) =
∂L

∂q̇
q̇ − L(q, q̇, t) (1.41)

and obey the equation of motion
dh

dt
= −∂L

∂t
. (1.42)

h(q, q̇, t) is therefore constant if L does not depend explicitly on time.

1Sometimes for clarity we will put a bar, e.g., r(t) to indicate that this path is on-shell, i.e. that it satisfies the EOM
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• If more then one coordinate is involved then

h(qA, q̇A, t) =
∑
A

pAq̇
A − L (1.43)

=
∂L

∂q̇A
q̇A − L (1.44)

where we have and will from now on follow the summation convention, where repeated indices are
summed over.

• We will distinguish the hamiltonian function h(q, q̇, t), which is a function of q, q̇, and t, from the
Hamiltonian H(p, q, t) which is a function of q and p and t through the Legendre transform (more
later). Thus pA(q, q̇, t) in the hamiltonian function (Eq. (1.43)) is a function of the q and the q̇, while
in the Hamiltonian the q̇ is a function of q and p.

• For a rather general Lagrangian

L =
1

2
aij(q) q̇

iq̇j + bi(q)q̇
i − U(q) , (1.45)

(which is the form of the Lagrangian for a particle in a magnetic field or gravity) the hamiltonian
function is

h(q̇, q, t) =
1

2
aij(q) q̇

iq̇j + U(q) (1.46)

The fact that the hamiltonian function is independent of bi is closely related to the fact that magnetic
fields do no work.

The period of one dimensional motion

• For one dimensional Lagrangian’s of the form

L =
1

2
m(q) q̇2 − Veff(q) (1.47)

The first integral is

E =
1

2
m(q) q̇2 + Veff(q) (1.48)

You should be able to show that the this first integral equation can be used to determine q(t) implicitly.
Integrating from (t0, q0) to (t, q(t)) yields

±
∫ q(t)

q0

dq

(
m(q)

2(E − Veff(q))

)1/2

= t− t0 , (1.49)

which, when inverted, gives q(t). The plus sign is when q is increasing in time, while the minus sign is
when q(t) is decreasing in time

• In a typical case the potential Veff(q) and energy E is shown below
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For the specified energy, the motion is unbounded for q > qc, and oscillates between when qA < q < qB .
qA, qB and qC are called turning points. The period T (E) is the time it takes to go from qA to qB and
back. Thus half a period T (E)/2 is the time it takes to go from qA to qB or

T (E)

2
=

∫ qB

qA

dq

(
m(q)

2(E − Veff(q))

)1/2

. (1.50)
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