
1 Basic Mechanics

1.1 Newtonian mechanics a brief review

Momentum and Center of Mass

• Newton’s equations of motion for a system of particles reads

dpa
dt

= Fa (1.1)

where a = 1 . . . N labels the particles. Here pa = mava. We usually divide up the forces on the a-the particle
into external forces acting on the system from outside, and internal forces acting between pairs of particles:

Fa = F ext
a︸︷︷︸

external forces

+
∑
b6=a

Fab︸ ︷︷ ︸
internal forces

. (1.2)

Here
Fab ≡ Force on particle a by b , (1.3)

and of course we have Newton’s equal and opposite rule

Fab = −Fba . (1.4)

• Summing over the particles we find (after using Eq. (1.4)) that the internal forces cancel and the total
change in momentum per time is the sum of external forces

dPtot

dt
= F ext

tot (1.5)

where Ptot =
∑

a pa and F ext
tot =

∑
a F

ext
a . If there are no external forces then Ptot is constant

• The velocity of the center of mass is

vcm =
Ptot

Mtot
=

1

Mtot

∑
a

mava . (1.6)

The position of the center of mass (relative to an origin O) is

Rcm =
1

Mtot

∑
a

mara . (1.7)

Angular momentum:

• Angular momentum is defined with respect to a specific origin O (i.e. ra depends on O) which is not
normally notated

`a,O ≡ `a ≡ ra × pa . (1.8)
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It evolves as
d`

dt
= ra × Fa (1.9)

• The total angular momentum Ltot =
∑

a `a changes due to the total external torque

dLtot

dt
= τ ext

tot , (1.10)

where τ ext
tot =

∑
a ra×F ext

a were we have generally assumed that the internal forces are radially directed
Fab ∝ (ra − rb)

• The angular momentum depends on the origin O. Writing the position of the particle relative to the
center of mass as ∆ra, i.e.

ra = Rcm + ∆ra , (1.11)

the angular momentum of the system about O is

LO = Rcm × Ptot︸ ︷︷ ︸
Ang-mom of center of mass about O

+
∑
a

∆ra × pa︸ ︷︷ ︸
Ang-mom about the cm

. (1.12)

Energy

• Energy conservation is derived by taking the dot product of v with dp/dt. We find that the change in
kinetic energy (on the a-the particle) equals the work done (on the a-particle).

1

2
mav

2
a(t)

∣∣∣∣t2
t1

= Wa (1.13)

where the work is

Wa =

∫ ra(t2)

ra(t1)

Fa · dra (1.14)

• Potential Energy. For conservative forces the force can be written as (minus) the gradient of a scalar
function which we call the potential energy

Fa = −∇ra
U (1.15)

Consider the potential energy U12 between particle 1 and 2. Since the force is equal and opposite

F12 = −∇r1
U12(r1, r2) = +∇r2

U12(r1, r2) = −F21 (1.16)

and this is used to conclude that interaction potential between two particles is of the form

U int
12 = U(|r1 − r2|) (1.17)

Typically we divide up the potential into an external potential and the internal ones

U(ra) = U ext(ra) +
1

2

∑
ab,a6=b

U int
ab (ra, rb) (1.18)

The sum over the internal potentials comes with a factor of a half because the energy between particle-1
and particle-2 is counted twice in the sum, e.g. for just two particles

U int
12 (r1, r2) =

1

2
(U(|r1 − r2|) + U(|r2 − r1|)) . (1.19)
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• Energy. The total energy is

E =
∑
a

1

2
mav

2
a + U ext(ra) +

1

2

∑
ab,a6=b

U int
ab (ra, rb) (1.20)

and is constant if there are no non-conservative forces.

If there are non-conservative forces then

E(t2)− E(t1) = WNC (1.21)

where the work done by the non-conservative forces is WNC =
∑

a

∫
FNC
a · dra

• It is convenient to measure velocities relative to the center of mass

va = vcm + ∆va (1.22)

where ∆va = ∆̇ra, then the kinetic energy

K =
1

2
Mtotv

2
cm︸ ︷︷ ︸

KE of center-mass

+
∑
a

1

2
ma∆v2a︸ ︷︷ ︸

KE relative to center-mass

(1.23)

Galilean invariance:

• Consider newtons laws then for an isolated system of particles

dpa
dt

= Fa (1.24)

where Fa = −∇ra
U with

U =
1

2

∑
ab,a6=b

U int
ab (|ra − rb|) (1.25)

Here the space-time coordinates are measured by an observer O with origin.

Then consider an observer O′ moving with constant velocity −u relative to O. The “new” coordinates
(those measured by O′) are related to the old coordinates via a Galilean boost

ra → r′a =ra + ut (1.26)

t→ t′ =t (1.27)

The potential which only depends on ra − rb is independent of the shift. The observer measures

va → v′a =va + u (1.28)

pa → p′a =pa + mau (1.29)

The equations of motion for observer O′ are unchanged

dp′a
dt′

= F ′
a F ′ ≡ ∇r′U(|r′a − r′b|) (1.30)
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