1.1 Newtonian mechanics a brief review

Momentum and Center of Mass

- Newton's equations of motion for a system of particles reads

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{a}}{d t}=\boldsymbol{F}_{a} \tag{1.1}
\end{equation*}
$$

where $a=1 \ldots N$ labels the particles. Here $\boldsymbol{p}_{a}=m_{a} \boldsymbol{v}_{a}$. We usually divide up the forces on the a-the particle into external forces acting on the system from outside, and internal forces acting between pairs of particles:

$$
\begin{equation*}
\boldsymbol{F}_{a}=\underbrace{\boldsymbol{F}_{a}^{\mathrm{ext}}}_{\text {external forces }}+\underbrace{\sum_{b \neq a} \boldsymbol{F}_{a b}}_{\text {internal forces }} \tag{1.2}
\end{equation*}
$$

Here

$$
\begin{equation*}
\boldsymbol{F}_{a b} \equiv \text { Force on particle } a \text { by } b, \tag{1.3}
\end{equation*}
$$

and of course we have Newton's equal and opposite rule

$$
\begin{equation*}
\boldsymbol{F}_{a b}=-\boldsymbol{F}_{b a} \tag{1.4}
\end{equation*}
$$

- Summing over the particles we find (after using Eq. (1.4)) that the internal forces cancel and the total change in momentum per time is the sum of external forces

$$
\begin{equation*}
\frac{d \boldsymbol{P}_{\mathrm{tot}}}{d t}=\boldsymbol{F}_{\mathrm{tot}}^{\mathrm{ext}} \tag{1.5}
\end{equation*}
$$

where $\boldsymbol{P}_{\text {tot }}=\sum_{a} \boldsymbol{p}_{a}$ and $\boldsymbol{F}_{\text {tot }}^{\text {ext }}=\sum_{a} \boldsymbol{F}_{a}^{\text {ext }}$. If there are no external forces then $\boldsymbol{P}_{\text {tot }}$ is constant

- The velocity of the center of mass is

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{cm}}=\frac{\boldsymbol{P}_{\mathrm{tot}}}{M_{\mathrm{tot}}}=\frac{1}{M_{\mathrm{tot}}} \sum_{a} m_{a} \boldsymbol{v}_{a} \tag{1.6}
\end{equation*}
$$

The position of the center of mass (relative to an origin O) is

$$
\begin{equation*}
\boldsymbol{R}_{\mathrm{cm}}=\frac{1}{M_{\mathrm{tot}}} \sum_{a} m_{a} \boldsymbol{r}_{a} \tag{1.7}
\end{equation*}
$$

Angular momentum:

- Angular momentum is defined with respect to a specific origin O (i.e. \boldsymbol{r}_{a} depends on O) which is not normally notated

$$
\begin{equation*}
\boldsymbol{\ell}_{a, O} \equiv \boldsymbol{\ell}_{a} \equiv \boldsymbol{r}_{a} \times \boldsymbol{p}_{a} \tag{1.8}
\end{equation*}
$$

It evolves as

$$
\begin{equation*}
\frac{d \boldsymbol{\ell}}{d t}=\boldsymbol{r}_{a} \times \boldsymbol{F}_{a} \tag{1.9}
\end{equation*}
$$

- The total angular momentum $\boldsymbol{L}_{\text {tot }}=\sum_{a} \boldsymbol{\ell}_{a}$ changes due to the total external torque

$$
\begin{equation*}
\frac{d \boldsymbol{L}_{\mathrm{tot}}}{d t}=\boldsymbol{\tau}_{\mathrm{tot}}^{\mathrm{ext}} \tag{1.10}
\end{equation*}
$$

where $\boldsymbol{\tau}_{\text {tot }}^{\text {ext }}=\sum_{a} \boldsymbol{r}_{a} \times \boldsymbol{F}_{a}^{\text {ext }}$ were we have generally assumed that the internal forces are radially directed $\boldsymbol{F}_{a b} \propto\left(\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right)$

- The angular momentum depends on the origin O. Writing the position of the particle relative to the center of mass as $\Delta \boldsymbol{r}_{a}$, i.e.

$$
\begin{equation*}
\boldsymbol{r}_{a}=\boldsymbol{R}_{\mathrm{cm}}+\Delta \boldsymbol{r}_{a} \tag{1.11}
\end{equation*}
$$

the angular momentum of the system about O is

$$
\begin{equation*}
\boldsymbol{L}_{O}=\underbrace{\boldsymbol{R}_{\mathrm{cm}} \times \boldsymbol{P}_{\mathrm{tot}}}+\underbrace{\sum_{a} \Delta \boldsymbol{r}_{a} \times \boldsymbol{p}_{a}} \tag{1.12}
\end{equation*}
$$

Ang-mom of center of mass about O Ang-mom about the cm

Energy

- Energy conservation is derived by taking the dot product of \boldsymbol{v} with $d \boldsymbol{p} / d t$. We find that the change in kinetic energy (on the a-the particle) equals the work done (on the a-particle).

$$
\begin{equation*}
\left.\frac{1}{2} m_{a} v_{a}^{2}(t)\right|_{t_{1}} ^{t_{2}}=W_{a} \tag{1.13}
\end{equation*}
$$

where the work is

$$
\begin{equation*}
W_{a}=\int_{\boldsymbol{r}_{a}\left(t_{1}\right)}^{\boldsymbol{r}_{a}\left(t_{2}\right)} \boldsymbol{F}_{a} \cdot \mathrm{~d} \boldsymbol{r}_{a} \tag{1.14}
\end{equation*}
$$

- Potential Energy. For conservative forces the force can be written as (minus) the gradient of a scalar function which we call the potential energy

$$
\begin{equation*}
\boldsymbol{F}_{a}=-\nabla_{\boldsymbol{r}_{a}} U \tag{1.15}
\end{equation*}
$$

Consider the potential energy U_{12} between particle 1 and 2 . Since the force is equal and opposite

$$
\begin{equation*}
\boldsymbol{F}_{12}=-\nabla_{\boldsymbol{r}_{1}} U_{12}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=+\nabla_{\boldsymbol{r}_{2}} U_{12}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\boldsymbol{F}_{21} \tag{1.16}
\end{equation*}
$$

and this is used to conclude that interaction potential between two particles is of the form

$$
\begin{equation*}
U_{12}^{\mathrm{int}}=U\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right) \tag{1.17}
\end{equation*}
$$

Typically we divide up the potential into an external potential and the internal ones

$$
\begin{equation*}
U\left(\boldsymbol{r}_{a}\right)=U^{\mathrm{ext}}\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a b, a \neq b} U_{a b}^{\mathrm{int}}\left(\boldsymbol{r}_{a}, \boldsymbol{r}_{b}\right) \tag{1.18}
\end{equation*}
$$

The sum over the internal potentials comes with a factor of a half because the energy between particle-1 and particle-2 is counted twice in the sum, e.g. for just two particles

$$
\begin{equation*}
U_{12}^{\mathrm{int}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{2}\left(U\left(\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)+U\left(\left|\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right|\right)\right) . \tag{1.19}
\end{equation*}
$$

- Energy. The total energy is

$$
\begin{equation*}
E=\sum_{a} \frac{1}{2} m_{a} v_{a}^{2}+U^{\mathrm{ext}}\left(\boldsymbol{r}_{a}\right)+\frac{1}{2} \sum_{a b, a \neq b} U_{a b}^{\mathrm{int}}\left(\boldsymbol{r}_{a}, \boldsymbol{r}_{b}\right) \tag{1.20}
\end{equation*}
$$

and is constant if there are no non-conservative forces.
If there are non-conservative forces then

$$
\begin{equation*}
E\left(t_{2}\right)-E\left(t_{1}\right)=W_{\mathrm{NC}} \tag{1.21}
\end{equation*}
$$

where the work done by the non-conservative forces is $W_{N C}=\sum_{a} \int \boldsymbol{F}_{a}^{N C} \cdot \mathrm{~d} \boldsymbol{r}_{a}$

- It is convenient to measure velocities relative to the center of mass

$$
\begin{equation*}
\boldsymbol{v}_{a}=\boldsymbol{v}_{\mathrm{cm}}+\Delta \boldsymbol{v}_{a} \tag{1.22}
\end{equation*}
$$

where $\Delta \boldsymbol{v}_{a}=\dot{\Delta} \boldsymbol{r}_{a}$, then the kinetic energy

$$
\begin{equation*}
K=\underbrace{\frac{1}{2} M_{\mathrm{tot}} v_{\mathrm{cm}}^{2}}+\underbrace{\sum_{a} \frac{1}{2} m_{a} \Delta v_{a}^{2}} \tag{1.23}
\end{equation*}
$$

KE of center-mass KE relative to center-mass

Galilean invariance:

- Consider newtons laws then for an isolated system of particles

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{a}}{d t}=\boldsymbol{F}_{a} \tag{1.24}
\end{equation*}
$$

where $\boldsymbol{F}_{a}=-\nabla_{\boldsymbol{r}_{a}} U$ with

$$
\begin{equation*}
U=\frac{1}{2} \sum_{a b, a \neq b} U_{a b}^{\mathrm{int}}\left(\left|\boldsymbol{r}_{a}-\boldsymbol{r}_{b}\right|\right) \tag{1.25}
\end{equation*}
$$

Here the space-time coordinates are measured by an observer O with origin.
Then consider an observer O^{\prime} moving with constant velocity - u relative to O. The "new" coordinates (those measured by O^{\prime}) are related to the old coordinates via a Galilean boost

$$
\begin{align*}
\boldsymbol{r}_{a} \rightarrow \boldsymbol{r}_{a}^{\prime} & =\boldsymbol{r}_{a}+\boldsymbol{u} t \tag{1.26}\\
t \rightarrow t^{\prime} & =t \tag{1.27}
\end{align*}
$$

The potential which only depends on $\boldsymbol{r}_{a}-\boldsymbol{r}_{b}$ is independent of the shift. The observer measures

$$
\begin{align*}
\boldsymbol{v}_{a} \rightarrow \boldsymbol{v}_{a}^{\prime} & =\boldsymbol{v}_{a}+\boldsymbol{u} \tag{1.28}\\
\boldsymbol{p}_{a} \rightarrow \boldsymbol{p}_{a}^{\prime} & =\boldsymbol{p}_{a}+m_{a} \boldsymbol{u} \tag{1.29}
\end{align*}
$$

The equations of motion for observer O^{\prime} are unchanged

$$
\begin{equation*}
\frac{d \boldsymbol{p}_{a}^{\prime}}{d t^{\prime}}=\boldsymbol{F}_{a}^{\prime} \quad \boldsymbol{F}^{\prime} \equiv \nabla_{\boldsymbol{r}^{\prime}} U\left(\left|\boldsymbol{r}_{a}^{\prime}-\boldsymbol{r}_{b}^{\prime}\right|\right) \tag{1.30}
\end{equation*}
$$

