Parametric Resonance

- Consider an oscillator with a changing resonant frequency

$$
\Omega=2 \omega_{0}+\varepsilon
$$

$$
\frac{d^{2} q}{d t^{2}}+\omega_{0}^{2}(1+h \cos \Omega t) q=0
$$

small

This model arises in an enormous number of applications

- Stability of the paul trap for charged ions
- reheating after inflation
- Stability of helicopter blades
- hawking radiation..
- As a model consider a pendulum with a oscillating support $\quad \Delta y=-y_{0} \cos \Omega t \quad$ with $\Omega \simeq 2 \omega_{0}$, so that the support
 "drops" the mass at the top of the arc $\phi_{\text {max, }}$ and pulls the mass back up at $\phi \simeq 0$

$$
\ddot{\phi}+\omega_{0}^{2}\left(1+\frac{y_{0} \Omega^{2}}{L} \cos \Omega t\right) \phi=0
$$

First consider the unperturbed oscillator and calculate the tension as a function of time in the rod

- The tension is smaller than mg at $\phi_{\max }$

$$
\begin{aligned}
T_{\min } & =m g \cos \phi_{\max }=m g\left(1-\phi_{\max }^{2} / 2\right) \\
& =m g-\frac{E}{L} \longleftarrow \text { energy in oscillator } \alpha \phi_{\max }^{2}
\end{aligned}
$$

- But larger than $m g$ at the bottom:

$$
\begin{gathered}
T_{\max }=m g+\frac{m v^{2}}{L}=m g+2 E / L \\
\text { "centrifugal force" }
\end{gathered}
$$

- So if the mass is dropped by Δy at $\phi_{\text {max }}$, and pulled up by Δy at $\phi \simeq 0$ the external work done in half a period $\tau_{0} / 2$ is

$$
W=\left(T_{\max }-T_{\min }\right) \Delta y=\frac{3 E}{L} \Delta y
$$

Since this is positive, the energy will constantly grow:

$$
\begin{aligned}
\stackrel{\Delta}{E}=\frac{\Delta E}{\tau_{0} / 2}=6 \frac{\Delta y}{L} \frac{E}{\tau_{0}} \quad \begin{array}{l}
\text { leading to exponential } \\
\\
\\
\\
\end{array} \quad \begin{aligned}
\text { energy by in the external work. }
\end{aligned}
\end{aligned}
$$

- Now consider what happens if the modulation frequence differs from the resonance condition

If the modulation amplitude is large enough it can overcome the detuning

$$
\omega_{0}^{2}(1+h \cos \Omega t)
$$

- modulation amplitude

Causing exponential growth. We will see: (1) that the condition is

$$
|\varepsilon|<\frac{1 h \omega_{0}}{2}
$$

The stability regions are shown on the next slide
(2) The growth rate in amplitude is

$$
\lambda=\sqrt{\left(\frac{h \omega_{0}}{2}\right)^{2}-\varepsilon^{2}}
$$

Unstable oscillations at P1

Stable oscillations at P2

Mathematical Analysis of Parametric Resonance

We study:

$$
\ddot{q}+\omega_{0}^{2}(1+h \cos \Omega t) q=0
$$

with $\Omega=2 \omega_{0}+\varepsilon \equiv 2 \omega$. As always
we work with a rotating wave/slowroll/ secular perturbation theory / WKB approximation (all these are basically the same!)

$$
q(t)=q^{(0)}(t)+q^{(1)}(t)
$$

with

$$
\begin{aligned}
q^{(0)}= & \operatorname{Re}\left[A(t) e^{-i \omega t}\right] \\
= & a(t) \cos \omega t+b(t) \sin \omega t \\
& <\text { stow functions }
\end{aligned}
$$

Then note:
of time
(1) $\ddot{q} \stackrel{(0)}{=}-\omega^{2} q^{(0)}+[-2 \omega \sin \omega t \dot{a}+2 \omega \cos \omega t \dot{b}]+(\sin a 11)^{2}$
(2)

$$
\begin{aligned}
(\cos 2 \omega t)(\cos \omega t) & =\frac{1}{2}\left(e^{i 2 \omega t}+e^{-2 i \omega t}\right) \frac{1}{2}\left(e^{i \omega t}+e^{-i \omega t}\right) \\
& =\frac{1}{2} \cos 3 \omega t+\frac{1}{2} \cos \omega t
\end{aligned}
$$

(3) $\cos 2 \omega t \sin \omega t=\frac{1}{2} \sin 3 \omega t-\frac{1}{2} \sin \omega t$
(4) $\left(w_{0}^{2}-w^{2}\right) q^{(0)} \simeq-\omega \varepsilon q^{(0)}$

Substituting into

$$
\begin{aligned}
& \ddot{q}^{(1)}+\omega_{0}^{2} q^{(1)}+ \frac{(2 \dot{b}-a \varepsilon+1 / 2 h \omega a)}{} \omega \cos \omega t \\
& \frac{(-2 \dot{a}-b \varepsilon-1 / 2 h \omega b)}{} \omega \sin \omega t \\
&+3 \omega t \text { terms }=0
\end{aligned}
$$

As is usual the $q^{(1)}$ will solve the $3 w$ terms. The underlined (secular) terms must be set to zero to avoid secular divergences

$$
-\frac{d}{d t}\binom{a}{b}=\left(\begin{array}{cc}
0 & \varepsilon+h \omega_{0} / 2 \\
-\varepsilon+\frac{h \omega_{0}}{2} & 0
\end{array}\right)\binom{a}{b}
$$

- This system of equations is solved by finding the eigenvectors and evalues

$$
\lambda_{ \pm}= \pm \sqrt{-\varepsilon^{2}+\left(\frac{h \omega_{0}}{2}\right)^{2}} \text { and corresponding vectors }
$$

The Solution is

$$
\binom{a}{b}=c_{+} e^{\lambda_{+} t}\left(E_{+}\right)+c_{-} e^{\lambda_{-} t}\left(E_{-}\right)
$$

(1) If the drive amplitude is large enough:

$$
|\varepsilon|<\frac{h \omega}{2}
$$

- It overwhelms the detuning, and the eigen values are real with $\lambda_{+}>0$. The oscillation explodes exponentially. This is the point P_{1} on the next slide (clic kme)
(2) If the drive frequency Ω is not too close to $2 \omega_{0}$. Then the e-values are imaginary:

$$
\lambda_{ \pm}= \pm i \sqrt{\varepsilon^{2}-\left(\frac{h \omega}{2}\right)^{2}} \text { for } \frac{h \omega_{0}}{2}<|\varepsilon|
$$

- The oscillations are stable. The slowly oscillating $a(t)$ and $b(t)$ will envelope the more rapid $\cos \Omega t$ oscillations. This is the point P_{2} on the next slide. Clickme

Unstable oscillations at P1

Stable oscillations at P2

