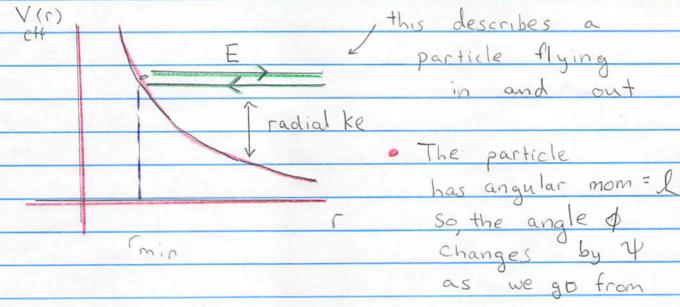
Scattering

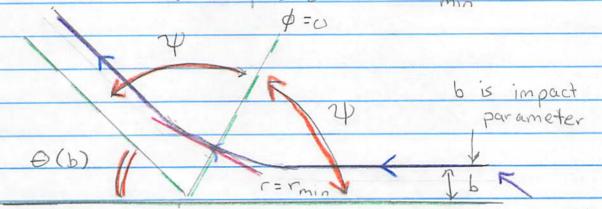
For definiteness take:

U(r) = +k and
$$\mu = m_1 = m m_2 - > \infty$$

Then Veff = l2 + U(r)



Then in coordinate space: r=rmn tor ->00



trajectory

O(b) = TT - 24 = scattering angle

The angular momentum is related to b: l = mvb = V2mE b · Now the angular change I on the way out $\frac{1}{\sqrt{2}m} = \frac{1}{\sqrt{E - \sqrt{eff(r)}}}$ · Introducing the same dimensionless parameters: $\Gamma_0 = L^2$ E = E $V = V_{eff} = (L + 2)$ from $\Gamma_0 = L^2/2m\Gamma_0^2$ $\Gamma_0 = L^2/2m\Gamma_0^2$ $\Gamma_0 = L^2/2m\Gamma_0^2$ ellipse $u = r_0/r$ $\varepsilon = 2EQ^2/mk^2$ $v = (w+1)^2 - 1$ opposite sign
from ellipse Then Veff (w) = atan (TE) physical region u>0 ● So restoring units using $\Theta_{S/2} = \pi - \psi = \frac{\pi}{2}$

 $\cot \Theta_{S}/2 = \sqrt{2E \ell^{2}} = \sqrt{\epsilon}$ $\sqrt{m k^{2}}$

 $\cot \theta_{s} l_{z} = \sqrt{\frac{2Eb}{k}^{2}} = 2Eb$

tan 4 = 18

So now we have expressed the scattering angle Os in terms of the integrals of the motion:

E and b = 1 $\sqrt{2mE}$

And our job as classical mechanists is done.

But the result is often expressed differently in terms of cross-section

Cross Section

We consider a bean with L'uninosity

\[= \tilde{\text{"intensity"}} = \text{number of particles per area} \]

\[\text{per second incident upon a tarayet} \]

(See picture on next page)

\[\text{target} \]

\[\text{d} \text{2} = 2\text{T\$\text{sinOd}\text{d}} \]

\[\text{d} \text{2} = 2\text{T\$\text{sinOd}\text{d}} \]

\[\text{with luminosity} \text{L}

There is an event rate dR, which particles scatter into the solid angle dS2. By definition the cross section do is:

dR = 2 do cross section x the Luminosity!

(detector)

of course this rate/do is proportional to the dector size:

 $\frac{1}{dS} = \frac{d\sigma}{dS} = \frac{d\sigma}{dS} = \frac{d\sigma(\theta)}{dS} = \frac{2\pi \sin\theta d\theta}{dS}$

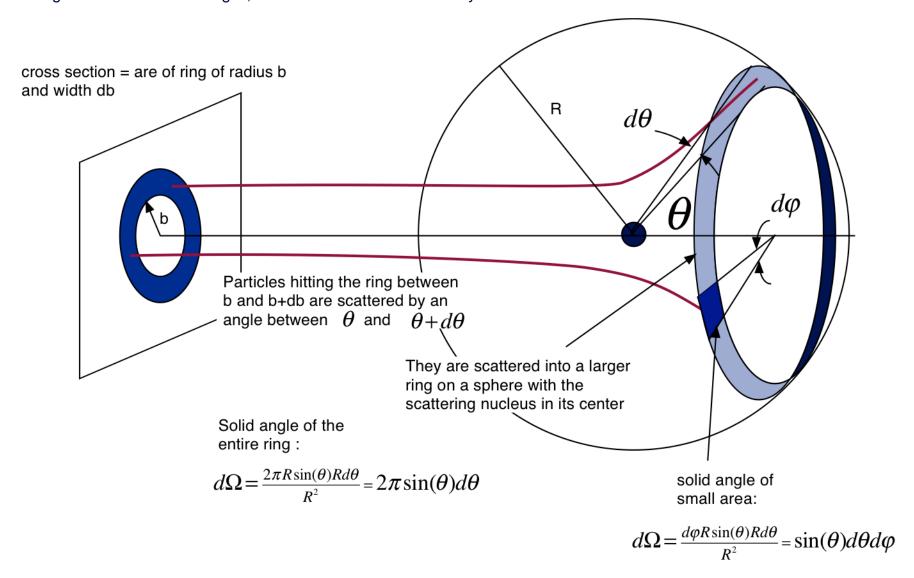
Now the rate for particles to finite object of study

Scatter with impact parameter between b and btolb

is #/l'Area sec)

. dR = 2 2Tbdb area of ring

Figure credit: Werner Boeglin, Florida International University



Then for each b there is	a scattering
Then for each b there is angle O(b). So the rate u	ith do = dr /2 Tsino
$dR = 2\pi b \left \frac{db}{d\theta} \right d\theta$	(the scattering rate to scatter between theta and theta + dtheta)
$dR = 2 \frac{b}{\sin \theta} \left \frac{db}{d\theta} \right = 2\pi \sin \theta$	0 d0 = 2 do
So comparison with > (two pages back)	
$d\sigma(\theta) = b db $ $d\sigma(\theta) = \sin\theta d\theta $	(This is a general formula that you could possibly need on homework/comps)
Now for the case of conlomb cot 0/2 = 2Eb/k. So substituting	7
$\frac{d\sigma}{d\Omega} = \left(\frac{K}{4E}\right)^2 \frac{1}{\sin^4(\Theta/2)}$	used sine=2sine(ose)
7	ZE
Rutherford cross-setion	