Assignment \# 1

- Starting from the fact that $\hat{P}=-i \hbar \frac{\partial}{\partial x}$ show that the kinetic energy is

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}
$$

- Consider the particle in the box as worked out in class. Suppose that at time $t=t_{o}$ the particle has wave function

$$
\begin{equation*}
\psi\left(x, t_{o}\right)=\frac{1}{\sqrt{L}}\left[\sin \left(\frac{\pi x}{L}\right)+\sin \left(\frac{2 \pi x}{L}\right)\right] \tag{1}
\end{equation*}
$$

- Write down the eigen functions and eigenvalues of the Hamiltonian for this problem.
- Express $\psi\left(x, t_{o}\right)$ in terms of the Eigenfunctions of the Hamiltonian, i.e. writing

$$
\begin{equation*}
\psi\left(x, t_{o}\right)=\sum_{E_{n}} \phi_{E_{n}}(x) \psi\left(E_{n}, t_{o}\right) \tag{2}
\end{equation*}
$$

determine $\psi\left(E_{n}, t_{o}\right)$

- Determine the wave function at some later time t.
- Determine the average position and average momentum as a function of time

$$
\begin{align*}
\langle\hat{X}(t)\rangle & =\int d x x \psi^{*}(x, t) \psi(x, t) \tag{3}\\
\langle\hat{P}(t)\rangle & =\int d x \psi^{*}(x, t)-i \hbar \frac{\partial}{\partial x} \psi(x, t) \tag{4}
\end{align*}
$$

Make a graph of $\langle X(t)\rangle$ and $\langle P(t)\rangle$.

- Show that

$$
\begin{equation*}
\partial_{t}\langle\hat{X}(t)\rangle=\frac{\langle\hat{P}(t)\rangle}{M} \tag{5}
\end{equation*}
$$

- Consider the function shown in figure one. Determine its Fourier series expansion. First in terms of \sin and \cos and then in terms of $e^{i k x}$ If you can find a computer running mathematica and plot the first couple of terms in this series.

Figure 1: Take the size of the box to be -0.5 to 0.5 .

- Determine the Fourier transform $f(k)$ of the following function.

$$
\begin{equation*}
f(x)=\frac{1}{2 a} e^{-\frac{|x|}{a}} \tag{6}
\end{equation*}
$$

Make a graph of $f(k)$ for large and small a

- The lowest eignenstate of harmonic oscillator is

$$
\begin{equation*}
\phi_{E}(x)=\left(\frac{a^{2}}{\pi}\right)^{1 / 4} e^{-\frac{1}{2}(a x)^{2}} \tag{7}
\end{equation*}
$$

- Start by proving the following integrals using the tricks on the following page

$$
\begin{align*}
\int_{-\infty}^{\infty} d u e^{-a u^{2}+b u} & =\sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4 a}} \tag{8}\\
\int_{-\infty}^{\infty} d u u^{2} e^{-a u^{2}} & =\sqrt{\frac{\pi}{a}} \frac{1}{2 a} \tag{9}
\end{align*}
$$

Use this integrals to show that

$$
\begin{equation*}
\int d x\left|\phi_{E}(x)\right|^{2}=1 \tag{10}
\end{equation*}
$$

- Determine the average kinetic energy

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d x \phi_{E}^{*}(x) \frac{\hat{P}^{2}}{2 M} \phi_{E}(x) \tag{11}
\end{equation*}
$$

by taking derivatives and performing the integral over x.

- Determine the wave function in momentum space $\phi_{E}(p)$ where

$$
\begin{equation*}
\phi_{E}(x)=\sum_{p} \frac{e^{+i p x}}{\sqrt{L}} \phi_{E}(p) \tag{12}
\end{equation*}
$$

Make a graph of $\phi_{E}(p)$ for large and small $a .\left|\phi_{E}(p)\right|^{2} d p$ can be interperted as the probability that the wave function as momentum between p and $p+d p$

- Starting with Eq. 11 and Eq. 12 show that the average kinetic energy is

$$
\begin{equation*}
\sum_{p}\left|\phi_{E}(p)\right|^{2} \frac{p^{2}}{2 M} \tag{13}
\end{equation*}
$$

Take $\phi_{E}(p)$ from the previous problem, convert the sum over p to an integral (as discussed in class), and perform the integration. The answer should be the same as before

Gaussian integrals are handled as follows. Consider the following integral

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} d x e^{-x^{2}} \tag{14}
\end{equation*}
$$

Then

$$
\begin{equation*}
I^{2}=\int d x e^{-x^{2}} \int d y e^{-y^{2}}=\iint d x d y e^{-x^{2}+y^{2}} \tag{15}
\end{equation*}
$$

Then we can change to polar coordinates to write this as

$$
\begin{align*}
I^{2} & =\int_{0}^{2 \pi} d \theta \int_{0}^{\infty} r d r e^{-r^{2}} \tag{16}\\
& =(2 \pi) \frac{1}{2}=\pi \tag{17}
\end{align*}
$$

Thus we have

$$
\begin{equation*}
I=\sqrt{\pi} \tag{18}
\end{equation*}
$$

Next consider a slight generaliztion of this

$$
\begin{equation*}
I(j)=\int_{-\infty}^{\infty} d x e^{-x^{2}+j x} \tag{19}
\end{equation*}
$$

We may complete the square, $-x^{2}+J x=-(x-j / 2)^{2}+(j / 2)^{2}$, and then shift the integration variables $y \equiv(x-j / 2)$

$$
\begin{equation*}
I(j)=\int_{-\infty}^{\infty} e^{-x^{2}+j x}=\int d y e^{-y^{2}+(j / 2)^{2}}=e^{(j / 2)^{2}} \sqrt{\pi} \tag{20}
\end{equation*}
$$

This allows us to compute integrals of polynomial time gaussian. For example

$$
\begin{align*}
\int_{-\infty}^{\infty} d x x^{2} e^{-x^{2}} & =\left[\frac{\partial}{\partial j} \frac{\partial}{\partial j} \int d x e^{-x^{2}+j x}\right]_{j=0}=\left[\frac{\partial}{\partial j} \frac{\partial}{\partial j} e^{(j / 2)^{2}} \sqrt{\pi}\right]_{j=0} \tag{21}\\
& =\frac{1}{2} \sqrt{\pi} \tag{22}
\end{align*}
$$

