
Contents

Contents 1

1 Circuits: Chapter 29 3
1.1 Kirchoff rules and circuit analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 RC circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Forces on currents in a magnetic fields: Chapter 30 7
2.1 Force on a current carrying wire in a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Force and motion of a charged particle in electric and magnetic field . . . . . . . . . . . . . . 8
2.3 Torque on a current loop in a magnetic field and the magnetic moment . . . . . . . . . . . . 8

3 Currents as a source of magnetic field: Chapter 30 and 31 11
3.1 Qualitative features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The magnetic field from currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Forces and torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Amperes Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Faraday Law and induction: Chapter 32 and 33 17
4.1 Magnetic flux, Lenz Law and Faraday Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Generating of current flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 LR circuits – not on final but good to know . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 LC circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Maxwell correction and waves: Chapter 34 23
5.1 The maxwell correction to Amperes Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Electromagnetic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Energy and momentum in electromagnetic waves . . . . . . . . . . . . . . . . . . . . . . . . . 25

1





1 Circuits: Chapter 29

1.1 Kirchoff rules and circuit analysis

(a) Kirchoff rules state that:

i) The total current entering a junction equals the current exiting a junction

current in = current out

ii) The total change in potential around a closed loop is zero
∑

∆V = 0

(b) To analyze a circuit we first make a reasonable guess for the current direction, then march around the
circuit calculating the voltage drop across each circuit element. If your guess was wrong the current
will come out negative.

The voltage drop for a resistor is IR, ∆V = −IR. The voltage drop for a capacitor is Q/C, ∆V =
−Q/C. Let us analyze the simplest circuit in four ways. We will get the same answer in all four ways.

Consider the first two cases of the same circuit shown below.

H L L H

i) In the first case we have taken the current in the most natural way. Current flows from high
potential (H) to low potential (L). Marching around the circuit in the direction of the blue arrows,
Kirchoff rules say

+ E − IR = 0 thus I = E/R (1.1)

Here +E is the voltage change across the battery marching in the direction of the blue arrows.

ii) In the second case we have assumed that the current flows in a counter-clockwise direction. Since
current flows from high to low potential (labelled H and L in the picture), the voltage change
across the resistor in the direction of the arrows is +IR

+ E + IR = 0 thus I = −E/R (1.2)

Thus we see that the current in the counter-clockwise direction is negative, i.e. it flows in the
clockwise direction (as before).
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4 CHAPTER 1. CIRCUITS: CHAPTER 29

iii) The direction one gows around the loop is arbitrary. Consider the same circuit but analyze it by
going counterclockwise around the loop. We will get the same answer. In the first panel we going

H L L H

counterclockwise around the loop, and we have

− E + IR = 0 thus I = E/R (1.3)

The change in potenial across the battery now is −E since we are going against the battery. The
potential change across the resistor is from low (L) to high (H) or ∆V = +IR.

iv) Finally in the last case (going counter clockwise around) with counter clockwise current (right
figure), we have

− E − IR = 0 thus I = −E/R (1.4)

Thus the counterclockwise current is negative, i.e. the current is clockwise.

(c) (taught by Dr. Fernandez) The work done per time by the source (usually a battery) to maintain a
potential drop across a resistor or a capacitor is

P = IV , (1.5)

where V is the potential drop across the resistor or capacitor. For a resistor V = IR, for a capacitor
V = Q/C. You should understand where this formula comes from (see Sec. 2.2).

(d) When two or more resistors are in series the “equivalent” resistance is the sum of the resistors.

Requiv = R1 +R2 +R3

The situation is shown below

Replace with Requiv

Figure 1.1: Resistors in series
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(e) When two or more resistors are in parallel the “equivalent” resistance is found by adding the resistances
in reciprocal

1

Requiv
=

1

R1
+

1

R2
+

1

R3
(1.6)

The situation is shown below

Replace with Requiv

Figure 1.2: Resistors in parallel

1.2 RC circuits

(a) Consider a circuit with a resistor and a capacitor (an “RC” circuit). When the switch is closed the
battery will push charge on the capacitor. The charge will build up on the capacitor with time until
the capacitor’s voltage on the top plate exactly matches the voltage of the battery.

H

L

HL

I

++++++

-------
E-field

Figure 1.3: An RC circuit. The red arrow indicates the direction of the current. The blue arrows indicate
how we are marching around the loop in Eq. (1.8). The H and L indicate which side of resistor or capacitor
is at higher and lower potential.
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(b) The voltage change across the capacitor as we move from High to Low (H to L) is

∆V = −Q(t)

C
(1.7)

If we have positive charge Q(t) on the bottom plate as (shown) then the voltage change is negative
as we move from the bottom plate to the top plate (High to Low), i.e. the voltage drop is Q(t)/C.
Usually it is the voltage drop that is quoted.

(c) Kirchoff’s Law for the RC circuit reads

E − Q(t)

C
− I(t)R = 0 (1.8)

You should feel comfortable deriving this result.

(d) Eq. (1.8) can be solved for the current as a function of time

I(t) = Ioe
−t/τ (1.9)

where Io ≡ E/R is the initial current just after the switch is closed, and τ = RC is the time constant
of the circuit. While you are not required to derive this result you should be able to do the following:

i) Explain qualitatively why the current is decreasing and why the voltage drop across the capacitor
is increasing.

ii) Explain qualitatively and using Eq. (1.8) why the initial current Io is E/R.

iii) Show (using Eq. (1.8) and Eq. (1.9)) that the potential across the capacitor as a function of time
increases as

V (t) = E(1− e−t/τ ) (1.10)



2 Forces on currents in a magnetic fields: Chapter 30

2.1 Force on a current carrying wire in a magnetic field

(a) A current carrying wire of length ` in a constant magnetic field ~B experiences a force. The force is

~F = I~̀ × ~B (2.1)

Here the vector ~̀ is the length of the wire in the magnetic field, and is the pointed along the wire in
the direction wire’s current flow.

As with all cross products the magnitude of the force is

F = I`B sin(θ) (2.2)

where sin θ is the angle between the ` and B. A schematic is shown below

~̀

`?

`k

Figure 2.1: Force on a wire

Also note that the magnitude of the component of ~̀ perpendicular to ~B, i.e. `⊥ = ` sin(θ), so the
magnitude of the force is

F = I`⊥B (2.3)

The direction of the force is given by the right-hand-rule. In the Fig. 2.1 the force is into the page.
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8 CHAPTER 2. FORCES ON CURRENTS IN A MAGNETIC FIELDS: CHAPTER 30

2.2 Force and motion of a charged particle in electric and magnetic field

Electric fields

Prior to my taking over the course you learned the following

(a) In an electric field a particle can accelerate. The change in potential energy of a charge particle is

∆U = q∆V (2.4)

where ∆V is the change in voltage of the particle. In particular if a charged particle is accelerated or
decelerated through a potential change of ∆V there is a change in kinetic energy. Since ∆K+∆U = 0,
the change in kinetic energy is

∆K = −q∆V (2.5)

(b) If you have a steady current, maintained by a battery driving charge from low to high potential (so
the potential change is ∆V ), then the work per time or the power delivered by the battery is

P =
∆U

∆t
= I∆V (2.6)

(c) When measuring energies of charged particles (such as electrons and protons) it is most convenient to
use electron-volts, 1 eV = 1.6× 10−19J . The reason why it is used is because if a proton (or electron)
is accelerated through a potential of 2V , its kinetic energy will be 2 eV. Thus, when doubly ionized
helium (which consists of two protons and has a charge of 2 × proton charge) is accelerated through
2V , its final kinetic energy is 4 eV.

Magnetic fields

(a) A particle moving with velocity v in an electric and magnetic field experiences a force

~F = q(~E + v × ~B) (2.7)

(b) The magnetic field does not change the velocity, but only changes the direction of the velocity. This
causes a particle to move in a circle. Newton’s Law says that the magnetic force balances the centripetal
acceleration

qvB = m
v2

r
, (2.8)

This determines the radius of the rotational motion r for a given magnetic field and particle velocity.
You should understand where Eq. (2.8) comes from, and how it can be used to determine r. You should
also be able to predict the direction a proton or electron will circulate in a magnetic field. (Don’t forget
that electrons have negative sign).

2.3 Torque on a current loop in a magnetic field and the magnetic moment

(a) A current loop in a magnetic field experiences a torque and wants to rotate so that the magnetic
moment (see below) of the loop points in the direction of the magnetic field. The current loop acts
like a compass needle.

(b) The magnetic moment of a current loop is defined

~µ = NI ~A (2.9)

where I is the current and ~A is the area vector. N is the number of turns of the current loop.

i) The magnitude of the area vector is just the regular old area (e.g. πr2 for a circle). The direction
of the area vector is normal to the face of the area and is given by the right hand screw rule
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In this case one curls ones fingers around the loop (in the direction of the current or circulation of
the loop) and your thumb points in the direction of the area or the magnetic moment. The area
vector thus describes the orientation of the face of the area.

ii) The magnitude of the torque on a current loop in a constant magnetic field is

τ = µB sin θ (2.10)

where θ is the angle between the magnetic moment and the magnetic field.





3 Currents as a source of magnetic field: Chapter 30 and 31

3.1 Qualitative features

(a) A single wire carrying a current I produces a magnetic field. The field curls around the wire. The
direction of how the field circulates around the wire is given again by the right-hand-screw rule. In

Figure 3.1: right-hand-screw-rule for determining the direction of the Magnetic field

this case one points the thumb in the direction of the current, and the fingers curl in the direction of
the field. A formula which we will use a lot is the magnetic field from a long wire (see below)

B =
µoI

2πR
(3.1)

Here
µo
4π

= 10−7
T ·m
A

= 0.1
µT ·m
A

(3.2)

(b) Consider the figure below Fig. 3.2 (described in class). For a current ring shown below you should be
able to understand that the current in the picture flows in a counter-clockwise fashion. The magnetic
moment of the ring in this picture points down. The field produced by the ring is very similar to a
small “dipole” magnet with a north and south pole.

(c) Magnetic fields are measured in Tesla (the SI unit) or Gauss (1 G = 10−4 T). Typical magnetic fields
are:

Strong Magnetic Field ∼ 4 T
Kitchen magnet ∼ mT

Wire carying 1 A ∼ 1 G
Eaths field ∼ 0.5 G

11



12 CHAPTER 3. CURRENTS AS A SOURCE OF MAGNETIC FIELD: CHAPTER 30 AND 31

I
~µ

S

N

The current loop acts like a small magnet with the North/South poles

given by the direction of ~µ.

Figure 3.2: Magnetic field of a current ring or dipole magnet

3.2 The magnetic field from currents

(a) Each segment of a wire of length and direction, d~̀, produces a magnetic field, d~B, according to the
Biot-Savat rule shown in Fig. 3.3

d~B =
µo
4π

Id~̀ × r̂
r2

(3.3)

In this formula, r̂ points from the current to the observation point (where you want to compute ~B),

The Biot-Savart Law

– Each tiny bit of current length Id~̀ (current I , length and direction d~̀)

makes a small magnetic field d ~B:

d ~B =
µo

4⇡|{z}
constant

Id~̀⇥ r̂

r2
or dB =

µo

4⇡|{z}
constant

Id` sin ✓

r2

r

d~̀ r̂

I
d ~B

✓

Figure 3.3: Geometry of the Biot Savart Law

and r is the distance between the d~̀ and the observation point.

As with all cross products, the magnitude of dB is given by

dB =
µo
4π

Id` sin θ

r2
(3.4)
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where θ is the angle between the two vectors, d~̀ and r̂. Note that r̂ is a unit vector and |r̂| = 1. The
direction is given by the right-hand-rule and points into the page in Fig. 3.3.

(b) The Biot Savart Law and can be used to determine the magnetic field in a number of important cases.
In the cases listed below, I have indicated the formula as “derive/remember”, depending on whether
I expect you to be able to derive or simply remember the result. In all cases you should be able to
predict the direction of the field using the right-hand-rule in Eq. (3.3), or the more qualitative

i) (remember) The magnetic field of a line of current of length L at the midpoint

B =
µoI

2πR
cos θ1 (3.5)

Here cos θ1 is the angle, and R is the perpendicular distance shown in Fig. 3.4

I

✓1

R

L/2

I

✓1

R

B =
µoI

2⇡R
cos ✓1

B =
µoI

2⇡R

✓
cos ✓1 + cos ✓2

2

◆

✓2

Interpretation

cos ✓1 =
L/2p

(L/2)2 + R2

Figure 3.4: The magnetic field from a finite wire

ii) (derive using Ampere’s Law) The magnetic field of an infinite wire is

B =
µoI

2πR
(3.6)

This can also be found from Eq. (3.4) by taking L/2 very large

iii) derive The magnetic field at the center of a ring is

B =
µoI

2R
(3.7)

A schematic is shown below in Fig. 3.5 The direction of the field is in the direction of the magnetic
moment of the current ring (to the right in fig above). Indeed the magnetic field at the center be
written

~B =
µo
4π

2~µ

R3
(3.8)

where µ = IπR2 is the magnetic moment
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R

Io

Figure 3.5: Geometry of a current ring

iv) remember The field of a ring of current along the axis of a ring. A schematic is shown below in
Fig. 3.6 Along the axis of the ring we have

~B =
µo
4π

2~µ

(R2 + x2)3/2
µ = IπR2 (3.9)

At large distances x, we have

~B =
µo
4π

2~µ

x3
(3.10)

seeing a characteristic falloff of 1/x3. This 1/r3 is typical of all magnets which always have a
north and south pole. If a north pole existed in isolation (they don’t) we would see 1/r2 like in
the coulomb law.

R

x

Io p
R2 + x2

Figure 3.6: Geometry of a current ring on axis but away from center

3.3 Forces and torques

(a) We showed that like currents attract and unlike currents repel (i.e. the opposite to charges). You
should be feel comfortable deriving that the force per length (F/L) between infinitely long parallel
currents is

F

L
=
µoI

2

2πR
(3.11)

and be able to explain why they attract or repel by showing the fields and using I`B sin θ etc.

(b) For the two rings shown below, the top two rings attract (case a). The bottom two rings repel (case b).
However, in the bottom case, the rings will (if they can rotate) eventually turn relative to each other.



3.4. AMPERES LAW 15Two rings of current free to move and turn. What happens?

I I

II

Case A

Case B

Think carefully about case B. What is the direction of the magnetic moments of the loops in both cases?

Assume that the right ring can rotate. The field from the left ring points to the left. The magnetic
moment of the right ring wants to rotate by 180o in order to align its magnetic moment with the field
of the left ring. In Case B the magnetic moment of the left ring points to the left, while the right ring
initially points to the right. After the right ring rotates by 180o, the two rings will start to attract.

3.4 Amperes Law

(a) For any given loop we defined the circulation of the magnetic field about the loop as

circulation of ~B around a loop =

∮

loop

~B · d~̀ ≈
∑

segments

~B ·∆~̀ (3.12)

Example 31.3 can help you understand the meaning of this integral.

(b) Amperes Law says that the circulation of the magnetic field around an arbitrarily chosen loop equals
(up to a constant) the current through that loop

∮

loop

~B · d~̀ = µoIthru (3.13)

To understand what is Ithru look at Fig. 3.7. We first draw a loop (any loop) including its orientation
(in the Fig. 3.7 the orientation is clockwise from above). So the normal, n, to the loop points down
according to the right hand screw rule. The direction of positive current is given by n. In this case
the current through the loop is therefore

Ithrough = −2Io︸ ︷︷ ︸
current through from left wire

+ Io︸︷︷︸
current through from right wire

(3.14)

The first wire is negative because the current direction is opposite to what we called positive (the n
direction).

(c) We used Amperes law to derive the field of a solenoid. The field of a solenoid is

B = µonI (3.15)

inside the solenoid and zero outside the solenoid. Here n = N/L is the number of turns per length of
the solenod. I is the current in the solenoid.
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Figure 3.7: Two wires carrying currents 2Io up and Io down



4 Faraday Law and induction: Chapter 32 and 33

4.1 Magnetic flux, Lenz Law and Faraday Law

Roughly Faraday’s Law says that changing electric field produces a ~B-field. More precisely it says that the
circulation of the electric field (or the in the voltage) is minus the rate in change of the magnetic flux. Below
we will summarize the ingrediants.

• The magnetic flux ΦB is a measure of how much magnetic field passes through a loop. For a loop with
area vector ~A = An (i.e. with magnitude A and direction given by the right hand rule), the magnetic
flux is

ΦB ≡ ~B · ~A = BA cos θ (4.1)

The flux is positive if ~A (or n)and ~B point in the same direction

This is only for constant ~B and ~A. More generally one would integrate over the surface

ΦB ≡
∫

surface

~B · d~A (4.2)

The unit of flux is weber. 1 Weber = 1Tm2

• Changing magnetic fields produce electric fields or voltages. More precisely the emf around a loop E
is minus the change in magnetic flux

E = −N dΦB
dt

(4.3)

Here N is the number of turns in the loop of wire through which the magnetic field passes.

17



18 CHAPTER 4. FARADAY LAW AND INDUCTION: CHAPTER 32 AND 33

Here E is the circulation of the electric field.

E ≡
∮
~E · ~̀ (4.4)

• The minus sign in Eq. (4.3) is known as Lenz’ law and indicates the direction of the E . It means
that the current flows in such a way that the magnetic field which the induced current would produce
opposes the change in flux. Consider the example discusse in lecture (Example 32.1 in Book) Draw a
loop (the red square) and choose an orientation or direction of circulation – it usually a good idea to
take the normal to the loop to point in the same direction as the magnetic field (though you will get
the same answer the other way). Thus, in the figure the normal points out of the page, and positive is
defined counter clockwise.

The magnetic field (the blue circles) is increasing and thus the magnetic flux (i.e. the number and
strength of the the blue circles passing through the square) is increasing. We will conclude that the
red current flows clockwise in two ways:

(a) Physics way: The red current flows clockwise in this case since the secondary induced field
from the (red) current tends to make a magnetic field (the red crosses) which then opposes the
increasing flux.

(b) Math way: Mathematically the Emf is

E = −dΦB
dt

= −AdB
dt

(4.5)

where A is the area of the loop. The Emf is negative since the magnetic field is increasing. Thus
the emf is negative and this indicates – since counter-clockwise was defined by the normal as
positive – that the emf is clockwise.

4.2 Generating of current flow

We discussed to specific cases of current generation which you should feel comfortable deriving

• We discussed a rod moving on rails (a slide generator Section 32.5). Here the changing flux is caused
by the moving rod. The voltage is

E = B`v
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• A generator of AC current by turning a coil of wire in a magnetic field. Here the changing flux is
caused by the changing angle θ = ωt. This is reviewed in section 32.6 (see Derivation, Example 32.5,
Example 32.6)

E = −N d

dt
(BA cos(ωt)) = NBAω sin(ωt)

Here N is the number of turns of coil, B is the constant magnetic field, A is the area of the loop

In both cases you will need to do work to produce the current.

4.3 Inductance

• Consider a solenoid shown below in Fig. 4.1. The magnetic flux is proportional to the field, and the
field is proportional to the current

ΦB ∝ B ∝ I (4.6)

The proportionality constant is known as the inductance or L

NΦB ≡ LI (4.7)

Here N is the number of turns (see Fig. 4.1).

The energy stored in the field is

UB|{z}
energy

=
1

2
LI2 uB|{z}

energy/vol

=
UB

`⇡R2
=

B2

2µo

n =
N

`

B

A

length `

area = ⇡R2

Figure 4.1: Inductance and back emf

• When the current is changed this produces a voltage called the “back emf”since it opposes the change
in current. The voltage change across an inductor from point (A) to point (B) in Fig. 4.1 is

∆V = VB − VA = −LdI
dt

(4.8)

• You should know how to derive the inductance of a very long solenoid (you did it in class!)

L = µoN
2 πR

2

`

where the number of turns per length is

n =
N

`
(4.9)

Start by recalling that the magnetic field in a solenoid is B = µonI.
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• We showed that the (magnetic) energy stored in an inductor with current I is

energy stored in the solenoid = UB =
1

2
LI2 . (4.10)

Using the field of a solenoid
B = µonI , (4.11)

we find that the magnetic energy per volume is

uB =
magnetic energy

volume
=

UB
`(πR2)

=
B2

2µo
. (4.12)

We see that this magnetic energy is entirely determined by the magnetic field and is independent of
the geometry of the inductor.

• These formulas for the magnetic energy should be compared to the analogous formulas for the electric
energy. For a capacitor of charge Q, plate area A, and plate separation d (see Fig. 4.2 below), the
energy stored in a capacitor is

UE =
Q2

2C
(4.13)

where the capacitance is C = 1
εo

A
d . Gauss Law can be used to relate the electric field to the charge

stored

E =
1

εo

Q

A
, (4.14)

Thus the electric energy per volume is

uE =
electric energy

volume
=
UE
dA

=
1

2
εoE

2 (4.15)

We see that this electric energy is entirely determined by the electric field and is independent of the
geometry of the capacitor.

The energy is stored in the electric field

E
|{z}

electric field

=
1

✏o

Q

A|{z}
charge per area

Figure 4.2: Capacitor energy

4.4 LR circuits – not on final but good to know

4.5 LC circuits

• A schematic of an LC circuit is shown below (see Fig. 4.3). A fully charged capacitor (with charge
Qmax) is connected to an inductor. When the switch is thrown, charge on the capacitor flows from
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the capacitor through the circuit. This builds up magnetic energy. Then the charge gathers on the
opposite plate building up electric energy again. Then the charge runs through the system building up
magnetic energy. Finally the charge returns to the original top plate. Then the process repeats itsself.
The angular frequency of oscillation is

ωo =
1√
LC

(4.16)

So the period is

T =
2π

ωo
(4.17)

Figure 4.3: LC oscillations

• Applying Kirchoff Laws to the circuit we see (following the loop shown in the first panel of Fig. 4.3 )

∆Vinductor + ∆Vcapacitor =0 (4.18a)

−LdI(t)

dt
− Q(t)

C
=0 (4.18b)

where Q(t) is the charge on the upper plate.

• The solution to Eq. (4.18b) is
Q(t) = Qmax cos(ωot+ φ) (4.19)

where φ is the phase of the oscillation. If, as drawn in the Fig. 4.3, the charge is maximal at time t = 0
the phase is zero, φ = 0. If the charge where maximal not at t = 0 but at another time, the phase
would not be zero.

You should feel comfortable determining and interpreting the current using I = dQ(t)/dt

I(t) = −Imax sin(ωot) Imax = ωoQmax (4.20)
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Be able to answer (in plain speak) the following questions: What is the voltage across the inductor
versus time? What is the voltage across the capcitor versus time? What does a positive inductor
voltage mean? What does a negative capacitor voltage mean?.

• The energy in an LC circuit oscillates between electric and magnetic energy. In class, you determined
the electric energy and magnetic energy versus time. You should be able to graph these functions
versus time.

For instance, the electric energy is

uE(t) =
Q2(t)

2C
=
Q2

max

2C
cos2(ωot) (4.21)

Thus, the maximum electric energy is Q2
max/2C, while the average electric energy is

uE =
Q2

max

4C
(4.22)

You should be able to determine the magnetic energy versus time,

uB =
1

2
LI2(t) (4.23)

and be able to show that the maximum magnetic energy equals the maximum electric energy.



5 Maxwell correction and waves: Chapter 34

5.1 The maxwell correction to Amperes Law

• Maxwell reasoned that the Ampere’s Law is incomplete the full statement is that the circulation of ~B
is determined by the current, Ithru, and the time derivative of the electric flux which acts like a current
(known as the displacement current, ID). In plain (but oversimplified) speak, changing electric fields
make magnetic fields.

• The improved form is ∮
~B · ~̀ = µo(Ithru + ID) (5.1)

where the displacement current is defined as the time derivative of the electric flux

ID ≡ εo
dΦE
dt

ΦE ≡ electric flux ≡ ~E · ~A (5.2)

• You should understand the example shown in Fig. 5.1 that lead Maxwell to the notion of displacement
current. In the left figure the through current Ithru is Io. In the right figure there is no current passing

Figure 5.1: An example leading to the Maxwell correction

through the surface (since the charge builds up on the parallel plate capacitor and does not jump from

one plate to the next), and Ithru = 0. But the circulation of ~B around the (orange) loop (i.e.
∮
~B · ~̀)

is clearly the same in both cases. In the second case the electric flux through the surface is not zero
and changing. The displacement current (the time derivative of the electric flux) is Io. Thus the in
both cases Eq. (5.1) is satisfied.

• Since changing magnetic fields make electric fields, and changing electric fields act like a current making
magnetic fields, the two effects can be combined into a self supporting electro-magnetic waves.

23
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Currents make magnetic fields; currents are moving charges; so changing magnetic fields are made
by changing moving charges, i.e. accelerating charges. Thus propagating electromagnetic waves are
started off by accelerating charges.

• The full Maxwell equations are
∮
~E · d~A =

Qenc

εo
(Gaus Law) (5.3)

∮
~B · d~A =0 (No isolated magnetic charges) (5.4)

∮
~B · d~̀ =µoI + µoεo

dΦE
dt

(Ampere Law + Maxwell correction) (5.5)

∮
~E · d~̀ =− dΦB

dt
Faraday Law (5.6)

together with the force law
~F = q(~E + v × ~B) (5.7)

We have studied each of these general laws in various forms.

• Maxwell showed that E and B in the absence of charges satisfy the wave equation, with wave speed

c =
1√
µoεo

(5.8)

and numerically found that 1/
√
µoεo is the speed of light.

5.2 Electromagnetic waves

• An electromagnetic wave consists of electric and magnetic fields which are perpendicular to each other
and to the direction of propagationA sinusoidal electromagnetic wave

The ~E and ~B are perpendicular to each other and to the propagation directionFigure 5.2: Electromagnetic waves

• For a wave propagating along the x direction with ~E pointing in the y direction we have as shown in
Fig. 5.2

~E(t, x) =Emax sin(kx− ωt) ŷ (5.9)

~B(t, x) =Bmax sin(kx− ωt) ẑ (5.10)
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• The wavelength, frequency and seed of light are related to the wavenumber, k, and the angular fre-
quency, ω

k =
2π

λ
ω = 2πf c = λf =

ω

k
=

1√
µoεo

(5.11)

• The direction of propagation is given by the direction of ~E × ~B as shown in Fig. 5.3. The magnitude
of ~E × ~B is discussed in the next section.

A sinusoidal electromagnetic wave

The ~E and ~B are perpendicular to each other and to the propagation direction

Figure 5.3: The direction of propagation and energy and momentum flow is given by the direction of ~E× ~B.

• The amplitudes of the E and B fields are related

Emax = cBmax

5.3 Energy and momentum in electromagnetic waves

• The time averages of sin2 and cos2 are

sin2(ωt+ φ) = cos2(ωt+ φ) = 1
2

since sin2(x)+cos2(x) = 1. For those who don’t like the sin2 + cos2 = 1 “trick”, you can do the integral
and verify that

sin2(ωt) ≡ 1

T

∫ T

0

sin2(ωt) =
1

2
(5.12)

where T = 2π/ω is a period of oscillation.

• Evaluating the electric energy density (energy per volume) we have that the time averaged electric
energy density is

uE =
1

2
εoE2(t, x) =

1

4
εoE

2
max , (5.13)

we used that

E2(t, x) = E2
maxsin2(kx− ωt) =

1

2
E2

max (5.14)

while the magnetic energy density is

uB =
1

2µo
B2(t, x) =

1

4µo
B2

max . (5.15)

• Show that the two energy densities are equal in magnitude uE = uB since cBmax = Emax.Thus the
total energy per volume is

u = uE + uB = 2uE = 2uB =
1

2
εoE

2
max =

1

2µo
B2

max (5.16)
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Intensity and the Poynting Vector

The intensity is energy per area per time, I ⌘ S, where ~S = ~E ⇥ ~B/µo.

1

A

�U

�t
= u c = S

Figure 5.4: Light of average energy density u and volume Ac∆t flowing through the screen

• The intensity, I ≡ S, is the energy per area per time delivered by the light. You should understand
Fig. 5.4 and be able to show that the energy crossing the screen per area per time is related to the
energy per volume

I ≡ S =
1

A

∆E

∆t
= u c (5.17)

• We introduced the Poynting vector

~S =
~E × ~B

µo
(5.18)

which points in the direction of energy flow.

(a) The magnitude of the Poynting vector is the instantaneous flow of energy per area per time, i.e.

the energy flowing across a screen (of area ~A) per unit time is

∆U

∆t
= ~S · ~A = SA cos θ (5.19)

Thus, because of the cos θ in the dot product, if sunlight strikes a surface head on more energy is
absorbed per time. In the summer sunlight strikes the earth head on, while in the winter sunlight
is absorbed only at an angle since the sun is low in the sky due to the tilt of the earth.

(b) We showed that time averaged magnitude of the Poynting vector is the intensity

S = u c (5.20)

• The average momentum per volume in a light wave is

g =
u

c
=
S

c2
(5.21)

and more generally the momentum per volume is ~g = ~S/c2.

(a) Thus, if a screen (or particle, or solar cell,. . .) absorbs a certain energy ∆U = u∆V from a light
wave, then momentum it receives is

∆P =
∆U

c
(5.22)

where ∆P = g∆V .
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(b) We also showed using the Fig. 5.4 that the momentum absorbed per area per time (1/A∆P/∆t)
is g c. You should be able to derive this from Fig. 5.4.

Since momentum absorbed per area per time is the force per area, the radiation pressure (i.e. the
pressure felt by a screen such as Fig. 5.4 absorbing light) is

F

A
=

1

A

∆P

∆t
= gc absorbing light (5.23)

Sometimes the light is not absorbed but reflected, in this case the radiation pressure is twice the
previous case

F

A
= 2gc reflecting light (5.24)

since the light comes in and bounces back.
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