
4 Electric Fields in Matter

4.1 Parity and Time Reversal

(a) We discussed how fields transform under parity and time reversal. A useful table is

Quantity Parity Time Reversal

r(t) Odd Even

p(t) Odd Odd

 L = r × p Even Odd

F =force Odd Even

Q = charge Even Even

ρ Even Even

j Odd Odd

E Odd Even

B Even Odd

(b) In the table above the force is odd if parity is a symmetry of the theory. Similarly j is odd under time
reversal only if time-reversal is a symmetry of the theory. In a dissipative media, j is not odd under
time-reversal (though the microscopic currents are) and time-reversal is not a symmetry of macroscopic
electrodynamics.

(c) For example, for a parity invariant theory, a solution to the maxwell equations E(t,x),B(t,x) deter-
mines a new solution to the Maxwell equations E(t,x),B(t,x) can be found through inversion

E(t,x)→E(t,x) = −E(t,−x) (4.1)

B(t,x)→B(t,x) = E(t,−x) (4.2)

as specified by last two rows of the first column of the table

4.2 Electrostatics in Material

Basic setup

(a) In material we expand the medium currents jmat in terms of a constitutive relation, fixing the currents
in terms of the applied fields.

jmat = [ all possible combinations of the fields and their derivatives] (4.3)

We have added a subscript mat to indicate that the current is a medium current. There is also an
external current jext and charge density ρext.
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(b) When only uniform electric fields are applied, and the electric field is weak, and the medium is isotropic,
the polarization current takes the form

jmat = σE + χ∂tE + . . . (4.4)

where the ellipses denote higher time derivatives of electric fields, which are suppressed by powers of
tmicro/Tmacro by dimensional analysis. For a conductor σ is non-zero. For a dielectric insulator σ is
zero, and then the current takes the form

jb = ∂tP (4.5)

• P is known as the polarization, and can be interpreted as the dipole moment per volume.

• We have worked with linear response for an isotropic medium where

P = χE (4.6)

This is most often what we will assume.

For an anisotropic medium, χ is replaced by a susceptibility tensor

Pi = χijE
j (4.7)

For a nonlinear (isotropic) medium P one could try a non-linear vector function of E,

P (E) (4.8)

defined by the low-frequency expansion of the current at zero wavenumber, but this is rather too
simplistic for real ferro-electrics.

(c) Current conservation ∂tρ+∇ · j = 0 determines then that

ρmat = −∇ · P (4.9)

(d) The electrostatic maxwell equations read

∇ ·E =−∇ · P︸ ︷︷ ︸
ρmat

+ρext (4.10)

∇×E =0 (4.11)

or

∇ ·D =ρext (4.12)

∇×E =0 (4.13)

where the electric displacement is

D ≡ E + P (4.14)

(e) For a linear isotropic medium

D = (1 + χ)E ≡ εE (4.15)

but in general D is a function of E which must be specified before problems can be solved.



4.2. ELECTROSTATICS IN MATERIAL 15

Working problems with Dielectrics

(a) Using Eq. (4.9) and the Eq. (4.12) we find the boundary conditions that normal components of D
jump across a surface if there is external charge, while the parallel components E are continuous

n · (D2 −D1) =σext D2⊥ −D1⊥ =σext (4.16)

n× (E2 −E1) =0 E2‖ − E1‖ =0 (4.17)

Very often σext will be absent and then D⊥ will be continuous (but not E⊥).

(b) A jump in the polarization induces bound surface charge at the jump.

− n · (P2 − P1) = σmat (4.18)

(c) Since the curl of E is zero we can always write

E = −∇ϕ (4.19)

and for linear media (D(r) = ε(r)E(r)) with a non-constant dielectric constant ε(r), we find an
equation for D

∇ · ε(r)∇ϕ = 0 (4.20)

(d) With the assumption of a linear medium D = εE and constant dielectric constant, the equations for
electrostatics in medium are essentially identical to electrostatics without medium

− ε∇2Φ = ρext , (4.21)

but, the new boundary conditions lead to some (pretty minor) differences in the way the problems are
solved.

Energy and Stress in Dielectrics:

(a) We worked out the extra energy stored in a dielectric as an ensemble of external charges are placed
into the dielectric. As the macroscopic electric field E and displacement D(E) are changed by adding
external charge δρext, the change in energy stored in the capacitor material is

δU =

∫
V

d3xE · δD (4.22)

(b) For a linear dielectric δU can be integrated, becoming

U = 1
2

∫
V

d3xE ·D = 1
2

∫
V

d3x εE2 (4.23)

(c) We worked out the stress tensor for a linear dielectric and found

T ijE =− 1
2 (DiEj + EiDj) +

1

2
D ·Eδij (4.24)

=ε

(
−EiEj +

1

2
E2δij

)
(4.25)

where in the first line we have written the stress in a form that can generalize to the non-linear case,
and in the second line we used the linearity to write it in a form which is proportional the vacuum
stress tensor.
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(d) As always the force per volume in the Dielectric is

f j = −∂iT ijE (4.26)

where
T ij = the force in the j-th direction per area in the i-th (4.27)

More precisely let n be the (outward directed) normal pointing from region LEFT to region RIGHT,
then

niT
ij = the j-th component of the force per area, by region LEFT on region RIGHT . (4.28)

We can integrate the force/volume to find the net force on a given volume

F j =

∫
V

d3x f j(x) = −
∫
∂V

dai T
ij (4.29)

This can be used to work out the force at a dielectric interface as done in lecture.
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