
Figure 1: Grad, Div, Curl, Laplacian in cartesian, cylindrical, and spherical coordinates.
Here ψ is a scalar function and A is a vector field.



Vector Laplacian

∇2 acting on components of A (e.g. ∇2Az) indicates the scalar Laplacian in the appropriate
coordinate system.

Cartesian:
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Figure 2: Vector and integral identities. Here ψ is a scalar function and A, a,b, c are vector
fields.



Problem 1. 2D Electrostatics

(a) Determine the potential from a line of charge with uniform charge per length λ in
Heavyside-Lorentz units.

(b) Consider a 2D charge distribution ρ(x, y) in a finite region of space satisfying the
Poisson equation in two dimensions

−∇2ϕ(x, y) = ρ(x, y) (1)

Determine the potential at distances far from the charge density, i.e. determine the 2D
analog of the Cartesian multipole expansion. Develop the expansion to quadrupole or-
der, and define the appropriate Cartesian monopole, dipole, and quadrupole moments.

(c) Consider a 2d “dipole” placed at the center of a (vacuum) cylindrical cavity of radius
a, carved out of an infinite block of dielectric material with dielectric constant ε (see
figure). The dipole is formed by two lines of charge, with charge per length λ and −λ,
separated by an infinitesimal distance d. Determine the potential inside and outside
the cavity.

(d) Determine the induced charge per area on the surface of the cavity walls.

Figure 3: 2D Electrostatics
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Problem 2. Decay of a surface current:

A cylindrical shell of radius a has conductivity σ and thickness ∆ � a. Inside and outside
the shell is free space. At time t = 0 the shell carries a surface current K(0, φ) = ẑKo sinφ,
but at this moment the battery driving this current is switched off. (You may consider the
current to be uniform across the shell.)

(a) Determine the coulomb gauge vector potential and magnetic field at time t = 0 using
a magnetostatic approximation.

(b) What is the electric field in the shell at time t = 0. (This requires essentially no
computation).

(c) Determine K(t, φ) at subsequent times using a quasi-static approximation. (Hint:
determine the induced electric field in the shell due to a time dependent current of the
form K(t, φ) = ẑK(t) sinφ.)

(d) Estimate the decay time numerically for a centimeter sized copper shell with ∆/a ∼ 0.1.

Figure 4: Decay of a current
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Problem 3. Snell’s law in a crystal

Consider light of frequency ω in vacuum incident upon a uniform dielectric material filling
the space y > 0. The light is polarized in plane (as shown below) and has incident angle θ1.
The dielectric material has uniform permittivity ε and µ = 1.

(a) Derive Snell’s law from the boundary conditions of electrodynamics.

Consider light propagating in a crystal with µ = 1 and dielectric tensor εij. Along the
principal crystalline axes εij is given by

εij =

ε1 0 0
0 ε2 0
0 0 ε3

 , (2)

and thus, along the axes Di = εiEi (no sum over i).

(b) Starting directly from the Maxwell equations in the dielectric medium, show that the
frequency and wave numbers of the plane wave solutions E(t, r) = Eeik·r−iωt in the
crystal are related by

det

(
kikj − k2δij +

ω2εi
c2

δij

)
= 0 (no sum over i). (3)

Now consider light of frequency ω in vacuum incident upon a dielectric crystal. The light
has incident angle θ1, and propagates in the x − y plane, i.e. kz = 0. The incident light is
also polarized in x−y plane, and the axes of the dielectric crystal are aligned with the x, y, z
axes (see below). Only the y axis of the crystal has a slightly larger dielectric constant than
the remaining two axes,

εij =

ε 0 0
0 ε (1 + δ) 0
0 0 ε

 , (4)

with δ � 1.

(c) Determine angle of refraction (or sin θ2) including the first order in δ correction to
Snell’s law.

(d) Is the refracted angle smaller or larger than in the isotropic case? Explain physi-
cally. Does the angular dependence of your correction makes physical sense? Explain
physically.

(e) If the incident light is polarized along the z axis (out of the x− y plane), what is the
deviation from Snell’s law? Explain physically.
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Figure 5: Snell’s law geometry
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