
Problem 1. Propper acceleration

A particle of mass m, starting at rest at time t = 0 and x = 0 in the lab frame, experiences
a constant acceleration, a, in the x-direction in its own rest frame.

(a) The acceleration four vector

Aµ ≡ d2xµ

dτ 2
(1)

is specified by the problem statement. What are the four components of the acceler-
ation four vector in the rest frame of the particle and in the lab frame. What is the
acceleration, d2x/dt2, in the lab frame.

(b) Show that the position of the particle as a function of time can be parameterized by a
real number p

x =
c2

a
[cosh(p)− 1] (2)

where p is related to the time t through the equation:

c t =
c2

a
sinh(p) (3)

(c) Show that the parameter p is proportional proper time, p = a
c
τ .

(d) The rapidity of a particle, Y , is defined by its velocity

v

c
≡ tanh(Y ) (4)

where v = dx/dt. Show that the four velocity uµ = dxµ/dτ is related to the rapidity
through the hyperbolic relations.

(u0/c, u1/c) = (cosh(Y ), sinh(Y )) (5)

(e) Show that Y = aτ/c

Remark: We see that the rapidity of the particle increases linearly with proper time
during proper acceleration.

(f) If the particle has a constant decay rate in its own frame of Γ, show that the probability
that the particle survives at late time t is approximately(

2at

c

)−Γc/a

1



Problem 2. Fields from moving particle

The electric and magnetic fields of a particle of charge q moving in a straight line with speed
v = βc were given in class. Choose the axes so that the charge moves along the z−axis in the
positive direction, passing the origin at t = 0. Let the spatial coordinates of the observation
point be (x, y, z) and define a transverse vector (or impact parameter) b⊥ = (x, y), with
components x and y. Consider the fields and the source in the limit β → 1

(a) First (keeping β finite) find the vector potential Aµ associated with the moving particle
using a Lorentz transformation. Determine the field strengh tensor F µν by differenti-
ating Aµ, and verify that you get the same answer as we got in class.

(b) As the charge q passes by a charge e at impact parameter b, show that the accumulated
transverse momentum transfer (transverse impulse) to the charge e during the passage
of q is

∆p⊥ =
eq

2π

b⊥
b2
⊥c

(6)

(c) Show that the time integral of the absolute value of the longitudinal force to a charge
e at rest at an impact parameter b⊥ is

eq

2πγb⊥ c
(7)

and hence approaches zero as β → 1.

(d) Show that the fields of charge q can be written for β → 1 as

E =
q

2π

b⊥
b2
⊥
δ(ct− z) , B =

q

2π

v̂/c× b⊥
b2
⊥

δ(ct− z) . (8)

(e) Show by explicit substitution into the Maxwell equations that these fields are consistent
with the 4−vector source density

Jα = qvαδ2(b⊥)δ(ct− z) (9)

where vα = (c, v̂) .
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Problem 3. Moving conductors

The constitutive relation is a relation between the macroscopic electrical current density
in a medium and the applied fields. Recall that for a normal isotropic conductor at rest
in an electric (E) and magnetic field (B) the constitutive relation in a linear response
approximation is known as Ohm’s Law:

J = σE . (10)

The conductor is uncharged in its rest frame, but has a non-zero charge density in other
frames.

(a) By making a Lorentz transformation of the current and fields for small boost velocities:

(i) Deduce the familiar constitutive relation1 for a normal conductor moving non-
relativistically with velocity v in an electric and magnetic field from the rest
frame constitutive relation, Eq. (10). Iterpret the result in terms of the lorentz
force.

(ii) Show that the charge density in the moving conductor is ρ ' v ·J/c. Under what
conditions is the charge density positive or negative? Does a loop of wire, which
in its rest frame is uncharged and carries a current I, remain uncharged when it
is moving with velocity v? Explain.

(b) In a general Lorentz frame the conductor moves with four velocity Uµ (here Uµ = (c,0)
in the conductors rest frame, and Uµ = (γc, γv) in other frames). The constitutive
relation in Eq. (10) can be expressed covariantly as

Jµ =
σ

c
F µνuν (11)

(i) Check that Eq. (11) reproduces the current and charge density of part (a) in the
small velocity limit, v � c.

(c) Now consider a solid conducting cylinder of radius R and conductivity σ rotating rather
slowly with constant angular velocity ω in a uniform magnetic field Bo perpendicular to
the axis of the cylinder as shown below. Determine the current flowing in the cylinder
and sketch the result.

1
J = σ(E + v/c× B)
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Bo

ω

(d) Determine the torque required to maintain the cylinder’s constant angular velocity.
Assume that the skin depth is much larger than the radius of the cylinder.

(e) (optional) Evaluate the current numerically (in Amps) for a typical strong laboratory
field ∼ 1T , and rotation frequency ∼ 1 Hz, for Cu wire of radius ∼ 1 cm.
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Problem 4. The stress tensor from the equations of motion

In class we wrote down energy and momentum conservation in the form

∂Θµν
mech

∂xµ
= F ν

ρ

Jρ

c
(12)

Where the ν = 0 component of this equation reflects the work done by the E&M field on
the mechanical constituents, and the spatial components (ν = 1, 2, 3) of this equation reflect
the force by the E&M field on the mechanical constituents.

(a) Verify that

F ν
ρ

Jρ

c
=

{
J/c ·E ν = 0

ρEj + (J/c×B)j ν = j
(13)

(b) (Optional) Working within the limitations of magnetostatics where

∇×B =
J

c
∇ ·B = 0 (14)

show that the magnetic force can be written as the divergence of the magnetic stress
tensor, T ijB = −BiBj + 1

2
δijB2:

(
J

c
×B)j = −∂iT ijB (15)

(c) Consider a solenoid of infinite length carrying current I with n turns per length, what
is the force per area on the sides of the solenoid.

(d) Using the equations of motion in covariant form

− ∂µF µρ =
Jρ

c
(16)

and the Bianchi Identity
∂µFσρ + ∂σFρµ + ∂ρFµσ = 0 (17)

show that

F ν
ρ

Jρ

c
= − ∂

∂xµ
Θµν

em (18)

where
Θµν

em = F µρF ν
ρ + gµν

(
−1

4
FαβF

αβ
)

(19)

Hint: use the fact that F µρ is anti-symmetric under interchange of µ and ρ.

(e) (Optional) Verify by direct substitution, using F ij = εijkBk, that if there is no electric
field that

Θij = T ijB . (20)
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Problem 5. Two current sheets under Lorentz boosts

Consider two large square sheets of conducting material (with sides of length L separated by
a distance d, d � L) each carrying a uniform surface current of magnitude Ko. (The total
current in each sheet is Io = KoL.) The current flows up the right sheet and returns down
the left sheet. The mass of the sheets is negligible. The sheets are mechanically supported
by four electrically neutral columns of mass Mcol and cross sectional area Acol (three shown).
Neglect all fringing fields.

z

L

d

x

y

Ko Ko

(a) (3 points) Write down the electromagnetic stress tensor Θµν
em covariantly in terms of

F µν and compute all non-vanishing components of F µν and Θµν
em inside and outside of

the sheets.

(b) (1 point) Compute the total rest energy of the system (or Mtotc
2) including the con-

tribution from the electromagnetic energy.

(c) (3 points) Determine the electromagnetic force per area on the current sheets (magni-
tude and direction) and the components of the mechanical stress tensor in the columns,
Θ00

mech and Θyy
mech (use the coordinates system in the figure). You can assume that the

stress is constant across the cross sectional area of the columns.

(d) (6 points) Now consider the system according to an observer moving relativistically
with velocity β = v/c up the z-axis.

(i) Determine the electric and magnetic fields (magnitudes and directions) using a
Lorentz transformation. Check that direction of the Poynting vector measured
by this observer is consistent with physical intuition.

6



(ii) Determine the charge and current densities in the sheets according to this ob-
server. Are your charges and currents consistent with the fields computed in the
first part of (d)? Explain.

(e) (7 points) Now consider the system according to an observer moving relativistically
with velocity β = v/z to the right along the y-axis (use the coordinate system shown
in the figure).

(i) Determine the total mechanical energy in the columns according to this observer.

(ii) Determine the total electromagnetic energy according to this observer.

(iii) Determine the total energy of this configuration. Are your results consistent with
part (b)? Explain.

Comment: There is of course stress in the sheets. But, since it does not have a yy
component the stress in the sheets can be neglected in this problem.
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Problem 6. (Extra-Credit) Kinematics of the Lambda decays

The lambda particle (Λ) is a neutral baryon of mass M = 1115 MeV that decays with
a lifetime of τ = 2.9 × 10−10 s into a nucleon of mass m1 = 939 MeV and a π-meson of
mass m2 = 140 MeV. It was first observed by its charged decay mode Λ → p + π− in
cloud chambers. In the clould chamber (and in detectors today) the charge tracks seem
to appear out of nowhere from a single point (since the lambda is neutral) and have the
appearance of the letter vee. Hence this decay is known as a vee decay. The particles’
identities and momenta can be inferred from their ranges and curvature in the magnetic
field of the chamber. (In this problem M , m1, m2 etc are short for Mc2,m1c

2,m2c
2 etc., and

p1 and p2 are short for cp1 and cp2 ) A picture of the vee decay is shown below

(a) Using conservation of momentum and energy and the invariance of scalar products of
four vectors show that, if the opening angle θ between the two tracks is measured, the
mass of the decaying particle can be found from the formula

M2 = m2
1 +m2

2 + 2 (E1E2 − p1p2 cos θ)

(b) A lambda particle is created with total energy of 10 GeV in and moves along the x-axis.
How far on the average will it travel in the chamber before decaying? (Answer: 0.78 m)
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(c) Show that the momentum of the pion (or the proton) in the rest frame of the Lambda
is

p1 = p2 =

√
(M2 −m2

1 −m2
2)2 − 4m2

1m
2
2

4M2
(21)

and evaluate the velocity/c of the pion vπ/c numerically. (Answer: 0.573)

Use this to determine if a pion emitted in the negative x direction in the frame of the
decaying 10 GeV lambda will move forward (positive-x) or backwards (negative-x) in
the lab frame.

(d) What range of opening angles will occur for a 10 GeV lambda if the decay is more or
less isotropic in the lambda’s rest frame? (Hint: write a program in any language (e.g.
in mathematica) to plot θ vs. (pz in the rest frame). Or you can muck about with
algebra and learn less. I find θ = 0 . . . 5.03o )
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Problem 7. (Extra Credit) Kinematics of a Relativistic Rod

Consider a rod of rest length Do. According to an inertial frame K ′ the rod is aligned along
the x′-axis, and moves moves with velocity u′ along the y′ axis. The frame K ′ is moving to the
right with velocity v relative to K in the x direction. The coordinate origins of the K and K ′

systems are chose so that the midpoint of the rod crosses the spatial origin at time t = t′ = 0,
i.e. that space-time location of the rod center intersects t = t′ = x = x′ = y = y′ = 0.

(a) Find the space-time trajectory of the endpoints of the rod in frame K.

(b) At t = 0 in frame K, Show that the angle of the rod to the x-axis is

φ = −atan(γvvu
′/c2) (22)

where γv = 1/
√

1− (v/c)2

(c) Show that the length of the rod in frame K is√(
Do

γ

)2

+

(
vu′

c2

)2

D2
o

(d) In frame K, is the velocity of the rod v perpendicular to to its length vector L. Here
L points from one end of the rod to another at a given instant in time in frame K.
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