Problem 1. Propper acceleration

A particle of mass m, starting at rest at time t = 0 and x = 0 in the lab frame, experiences
a constant acceleration, a, in the x-direction in its own rest frame.

(a)

The acceleration four vector
d?a*

-~ dr? (1)

AF

is specified by the problem statement. What are the four components of the acceler-
ation four vector in the rest frame of the particle and in the lab frame. What is the
acceleration, d?x/dt?, in the lab frame.

Show that the position of the particle as a function of time can be parameterized by a
real number p
2
x =— [cosh(p) — 1] (2)
a
where p is related to the time ¢ through the equation:
2

ct = %sinh(p) (3)

Show that the parameter p is proportional proper time, p = 27.

The rapidity of a particle, Y, is defined by its velocity

= tanh(Y") (4)

o

where v = dz/dt. Show that the four velocity u* = dz* /dr is related to the rapidity
through the hyperbolic relations.

(u’/c,u' /c) = (cosh(Y),sinh(Y)) (5)

Show that Y = at/c

Remark: We see that the rapidity of the particle increases linearly with proper time
during proper acceleration.

If the particle has a constant decay rate in its own frame of I', show that the probability
that the particle survives at late time ¢ is approximately

20t —I'c/a
C
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Problem 2. Fields from moving particle

The electric and magnetic fields of a particle of charge ¢ moving in a straight line with speed
v = (B¢ were given in class. Choose the axes so that the charge moves along the z—axis in the
positive direction, passing the origin at ¢ = 0. Let the spatial coordinates of the observation
point be (x,y,z) and define a transverse vector (or impact parameter) b, = (x,y), with
components x and y. Consider the fields and the source in the limit g — 1

(a)

(b)

First (keeping 3 finite) find the vector potential A* associated with the moving particle
using a Lorentz transformation. Determine the field strengh tensor F* by differenti-
ating A*, and verify that you get the same answer as we got in class.

As the charge ¢ passes by a charge e at impact parameter b, show that the accumulated
transverse momentum transfer (transverse impulse) to the charge e during the passage
of ¢ is
eq by
Ap, = —— 6

PL= o b’e (6)
Show that the time integral of the absolute value of the longitudinal force to a charge
e at rest at an impact parameter b, is

eq
2myb, ¢ (M)

and hence approaches zero as 8 — 1.

Show that the fields of charge ¢ can be written for § — 1 as

b
E i—L(S(czf—z), B

B q v/iexby
- 2w bl

o B

d(ct —2). (8)

Show by explicit substitution into the Maxwell equations that these fields are consistent
with the 4—vector source density

J* = qu*6*(b.)6(ct — 2) (9)

where v* = (¢, V) .
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C) The  electeic  field

E, =

Y (3-vb)
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Problem 3. Moving conductors

The constitutive relation is a relation between the macroscopic electrical current density
in a medium and the applied fields. Recall that for a normal isotropic conductor at rest
in an electric (E) and magnetic field (B) the constitutive relation in a linear response
approximation is known as Ohm’s Law:

J=0FE. (10)

The conductor is uncharged in its rest frame, but has a non-zero charge density in other
frames.

(a) By making a Lorentz transformation of the current and fields for small boost velocities:

(i) Deduce the familiar constitutive relation' for a normal conductor moving non-
relativistically with velocity v in an electric and magnetic field from the rest
frame constitutive relation, Eq. (10). Iterpret the result in terms of the lorentz
force.

(ii) Show that the charge density in the moving conductor is p ~ v-J/c. Under what
conditions is the charge density positive or negative? Does a loop of wire, which
in its rest frame is uncharged and carries a current I, remain uncharged when it
is moving with velocity v? Explain.

(b) In a general Lorentz frame the conductor moves with four velocity U* (here U* = (¢, 0)
in the conductors rest frame, and U* = (y¢,yv) in other frames). The constitutive
relation in Eq. (10) can be expressed covariantly as

g = Zpmvy, (11)
c
(i) Check that Eq. (11) reproduces the current and charge density of part (a) in the
small velocity limit, v < c.

(c) Now consider a solid conducting cylinder of radius R and conductivity o rotating rather
slowly with constant angular velocity w in a uniform magnetic field B, perpendicular to
the axis of the cylinder as shown below. Determine the current flowing in the cylinder
and sketch the result.

1J:O‘(E+V/C><B)



YYyvYY VY

(d) Determine the torque required to maintain the cylinder’s constant angular velocity.
Assume that the skin depth is much larger than the radius of the cylinder.

(e) (optional) Evaluate the current numerically (in Amps) for a typical strong laboratory
field ~ 17T, and rotation frequency ~ 1 Hz, for Cu wire of radius ~ 1 cm.



Solution

(a) (i)

In a frame where the conductor is at rest

J=0oFE

(25)

the charge density p = 0. Make a Lorentz transformation from the conductor’s
rest frame to the lab frame, i.e. a frame moving with velocity —u relative to the
conductor, so that the lab observer sees the conductor moving with velcoity w.

We have
Jt =N JY.

(26)

Here the J are the currents in the conductor frame, J are the currents in the lab

frame.

To first order in w the Lorentz transformation matrix is

w= (e )= (e 1)

Thus

We need to use the Lorentz transformation rule to relate E to E and B.

The transformation rules for the E and B fields are
E| =E,
B =By
E, =yE, —yu/cx B
B, =B, +yu/cx E

and the inverse results

k)=

By =5

E, =vE, +yu/cx B~ E, +u/cx B
B, =vB, —yu/cx E

So the constitutive relation becomes to first order

J=0(E+2xB)
&

(37)

Clearly the constitutive relation takes the form J = of where f is the Lorentz

force.



(ii) From the lorentz tansformation rules

(ﬁ) N (u} U{C> (10) (38)

So the charge density is

pec~ul®/c~ul®/c (39)
where we used again that J ~ J to first order in v/c. Or, using vectors we have
p=u-J/c (40)

and note that w ~ v in the non-relativistic limit. From this expression we see
that a moving loop of wire carrying current / has positive charge density when
the current is in the same direction as the direction of motion of the conductor.
But, the charge density is negative when the current is in the opposite direction
of the direction of motion of the conductor. For a closed loop of wire the total
charge is unchanged and is equal to zero.

(b) We have with U* = (yc¢,yv)

g

J! :EFWUV (41)

:% [E've+ (vv x B)] (42)

~0 [E'+ (v/c x B)'] (43)

(c) Using the result
J=0(u/cx B,), (44)
we find in cylindrical coordinates
B, .
J(p,¢) = — P70 o 0z . (45)

We see that the electrons (which carry negative charge) flow up the wire at ¢ = 0 and
down the wire at ¢ = 7.

(d) Then Lorentz force on the current induces a torque:

T:/d?’rrx(%xBo), (46)
L [ papas {%(r ‘B,)—(r- J/c)Bo} , (47)

where L is the length of the cylinder. The second term in square braces integrates to
zero while the first terms gives

R
vt [ oo [0 (-0 cosgz)peos o) (15)
(rowR'BY)
=—Lz (WUZCQ . (49)



This is the torque by the magnetic field on the cylinder. To maintain a constant angular
velocity we need an external torque per length of
T _(mowR'B2)
—=4z—"2". 50
L * 4c? (50)
Notes:

e An alternative way to derive this is to equate the work done per time by the external
torque, 7 - w, with the energy dissipation

T~w:/d3’r'J.J (51)

g

—L4—CQB27TR4 (52)

e We next evaluate this numerically for copper. Expressing the torque in terms of the
skin depth (which is taken from Wikipedia):

d =1/ i—i =6.5cm/\/ fu. (53)

We find Rige
T o
I= & 2 (54
Converting to MKS and Tesla
B? J B, \?
B> 5 2 =1"8x10° g
= o — 8 x 10 (Tesla> (55)

So we find

T R\* f B, \? 6.5 cm
—~3N|— — ith R < —— 56
L (cm) <Hz) (Tesla) A < v f in Hz (56)

It is also to calculate the current flowing through each hemi-cylinder of the wire.

o= o / PR (57)

= 2eRE (58)
i
Or in MKS
é Ny (60)
BB (61)



which evaluates to a schockingly large current

4 R3B,
T3 6211,

=251Amps (é) (

10

B
Tesla

)(

(62)

(63)



Problem 4. The stress tensor from the equations of motion

In class we wrote down energy and momentum conservation in the form

aGl;l;ch v Jp
o Lo (12)

Where the v = 0 component of this equation reflects the work done by the E&M field on
the mechanical constituents, and the spatial components (v = 1,2, 3) of this equation reflect
the force by the E&M field on the mechanical constituents.

(a) Verify that

,J¢ [J)e E =0 13)
¢ \pEi4+(JlexB)Y v=j
(b) (Optional) Working within the limitations of magnetostatics where
J
VxB=> V.-B=0 (14)

c
show that the magnetic force can be written as the divergence of the magnetic stress
tensor, Ty} = —B'B’ + 1§ B*:

J . .
(= x B) = —9,T (15)

C

(c¢) Consider a solenoid of infinite length carrying current I with n turns per length, what
is the force per area on the sides of the solenoid.

(d) Using the equations of motion in covariant form

Jr
— 0, " = — (16)
c
and the Bianchi Identity
OuFop+ 05 F,y + 0,F, s =0 (17)
show that o 9
FY— = —-——0! 18
P O em ( )
where
O = FMF" 4 g" (=1 F,sF") (19)

Hint: use the fact that F'*# is anti-symmetric under interchange of p and p.

(e) (Optional) Verify by direct substitution, using F = €% By, that if there is no electric
field that -
0 — T (20)



L : The _Skress AA'&C«_\:MQ»@___EQM
]

o ) Q ¢ _ce I = N
O~ = ~ ' T
) F_TD i = F .3 - E.3 .

— _,] S\"“.\\M_\DA S ——— _ —_
S S N I S S
C

y - >
e < <
! < . |
- —ade e

B . I — - E {o + ﬁ“&w‘s B J- e ;
T
o - E AN
i —— (9 _)‘B )w.__._. (
B s -
— b) An m«gne,}a_'SJmLﬁ_ _ e _* -

r 3 S—= — SO
_ 1 £° - J x B ) k -

L ) o e

) = EV(}“QM“ 3 _B ws B

o F i o o .:‘L ‘W" T \n % - ;t: Ciﬁ’ﬁ“ ‘QP‘B—O“'

o - ﬁﬂm . o T

e e, —




__.bﬁ
So
L _ _ )
£ - 4 B“Jﬁ%‘ -(%8™) g™ -
- 8 9. ® 10 (RY &
_ 2. (Ase Q#Br\-:@
W SPS ORIy
| IXD. 2
i s : e
f e (T T =g (g
ax“ 2
B [© ]
Q) Covawiant  “Treed ment
_ £ FY, 30
i
. P7=-¢" o F7F ) ~
=) FET e+ (a7 _E’:f )
; a)(M QXM rf
- L Lo S S ~
o A . I
N A—— - . - B _
U | e
|



Derek Teaney

Derek Teaney

(D)


Pa cy €

US'\(\ 6 & e
[ A\

> FAY :
—1_° BL = nlLI,

—_—

S

o

N °
L\

\ T B

1]

N Io w1 S (CLQ
— =

R=0  outside

Tef = FO"'CC - Forc,Q, S ﬁ“d\‘f@knv\

——

Aceo. Aceo. n lP"dlch\-fO‘\

—-—\‘\‘\QA B:O a B-' O -

Z R/ —
nex force = TIL PP - - AT -T0)

/ow-r_ v 7 OuX

= 1%
So
0
1 B/ff P g

_(.m:_/'m%.m+8-3
— —_— 2
T = _\‘/r\_‘._i,v,\l \
Y




wh \e -porc,e

| o g’\\/es dwice  dhis

So

Force _ éf = f\:\:a B

Acee A WAL C

e  question G5 ihak do lke foc B, Biaznd,
C

The Stcest tensac %MGQ

ox B\.-\.=(>1
1

e ansSwex

R =

%'\r\ -\', Bo\d’ = \, B’&-.

by 2




Poq—\- D — (ovoriont TY‘C&,J(mev\.L

¥ - ¥ 3¢
Cc
- Y a3 g"f
r jl;h
= _ 2, (FMP FV{: ')
X
Thean
we
Conkinve

on

Nex




Y
ui\ncx
4
D F 3 % +I F _=0
VAN ¢— r—<*
IoF _of +3 F V=0
P ¢ T A

We See Since '\:Me 15 Quaih ngme’krici

-]

F*0 (o f V= LE*C(o. F. -2 F ) n
I O( > v VY \ Oj' )

| - :&COL'I
= ‘LQ F’ oA ‘Z *LA'%}*\A
- ) )
_'v =19
o
hed
L _ga:""F”(, )+ gy BTPAE
{ 5.»("‘ ~ oy’
C‘e\«be) \ A
Whiees 1N, o _ 5 [ EPPET MV[-_LF“@EW N
¥\ \ R i 7\
(—' - |
P = -g 97
XM
AU




"% - g% B 37"y 4+ 8™ (-] )
j P2
JT‘ ik\ m' 'Iﬁ o
; = BB (£ ™) 4 (-1
1 £ o™ Ty
o L =8 (EgMosTs™) v st (s
g‘ Ny 7
- | =1-B% s SWE |4 g (FB*Y
— - . -
‘‘‘‘‘ JO%= -gg?y ¢ i&’-_}_ﬂ_\*d._h
{ 2
- !: — -
: R — - -
|
DRSO _M_ — U -
o S o



Problem 5. Two current sheets under Lorentz boosts

Consider two large square sheets of conducting material (with sides of length L separated by
a distance d, d < L) each carrying a uniform surface current of magnitude K,. (The total
current in each sheet is I, = K,L.) The current flows up the right sheet and returns down
the left sheet. The mass of the sheets is negligible. The sheets are mechanically supported
by four electrically neutral columns of mass M, and cross sectional area Ao (three shown).
Neglect all fringing fields.

(a)

<~
d

(3 points) Write down the electromagnetic stress tensor © covariantly in terms of
F* and compute all non-vanishing components of F'** and ©4 inside and outside of
the sheets.

(1 point) Compute the total rest energy of the system (or M;.c?) including the con-
tribution from the electromagnetic energy.

(3 points) Determine the electromagnetic force per area on the current sheets (magni-
tude and direction) and the components of the mechanical stress tensor in the columns,
0% ., and ©¥ | (use the coordinates system in the figure). You can assume that the

stress is constant across the cross sectional area of the columns.

(6 points) Now consider the system according to an observer moving relativistically
with velocity 8 = v/c up the z-axis.

(i) Determine the electric and magnetic fields (magnitudes and directions) using a
Lorentz transformation. Check that direction of the Poynting vector measured
by this observer is consistent with physical intuition.



(ii) Determine the charge and current densities in the sheets according to this ob-
server. Are your charges and currents consistent with the fields computed in the
first part of (d)? Explain.

(e) (7 points) Now consider the system according to an observer moving relativistically
with velocity 5 = v/z to the right along the y-axis (use the coordinate system shown
in the figure).

(i) Determine the total mechanical energy in the columns according to this observer.
(ii) Determine the total electromagnetic energy according to this observer.
(iii) Determine the total energy of this configuration. Are your results consistent with

part (b)? Explain.

Comment: There is of course stress in the sheets. But, since it does not have a yy
component the stress in the sheets can be neglected in this problem.



Solution

(a) The stress tensor is
O — P o (—1F) | @

The only nonzero field component is the & component of the magnetic field. Using boundary

conditions or Ampere’s rule
K, .

n X (Boy — Bin) = ~ Z, (38)
we find K
B, = 70 , (39)

F# == (40)
The non-zero temporal components of X" are
O, = LB = 3(K, o (41)

The spatial components of ©*" are expressed in terms of the magnetic fields as:

3 i
QU = _-B'B + 732. (42)

So the non-zero spatial components are

— O =% =07 =1(K,/c)?. (43)

(b) The total energy is a sum of the rest energy of the columns and the electromagnetic
energy (the energy density in Eq. (41) times the volume)

MtOtCQ = 4MCOICQ + [L2d %(KO/C)Z} (44)

(c) The force per area on the sheets is the discontinuity in the stress tensor. For a normal
n; pointing from “in” to “out” the force is
FI

out

-0, (45)
and therefore, for the problem at hand, the electromagnetic force per area is
Y
(%) — o =4/, (40

9



This is the force per area on the right sheet and is directed outward. The force per area on
the left sheet is also directed outward

(%) = 4o )

Note: the is exactly half of what would get for surface current in a uniform magnetic field
of K,/c (the field in between the sheets). Indeed, the force on the currents in the right sheet
can be interpreted as arising from the fields generated by the currents in the left sheet. This
left-sheet-generated field strength is %Ko/ c.

The net total force on the sheets is zero (otherwise the configuration would not be stable).
Thus, the electromagnetic force is balanced by the mechanical forces in the columns. The
mechanical force per area in the four columns is therefore

@yy _ %L2(K0/C)2

=2 > 77 4
mech 4Ac01 ) ( 8)

where the factor of four accounts for the four columns. The mechanical energy density in
the columns is )
@00 _ Mcolc .
mech Acold

(49)

(e) Now we will boost the configuration. 3 is the velocity of the new observer, 3 = fz.

(i) To determine the boosted fields we note the transformation rules

Ly =Ey, (50)
E, =vE, +78x B, (51)
and

B =Dy, (52)
B, =yB, -8 x E,|, (53)

and thus in this case we have
EY = yB(K,/c), (54)
B =~(K,/c). (55)

The direction of E x B is in the negative z direction. This makes sense — according
to an observer moving the positive z direction the fields have a net momentum in the
negative z direction.

(ii) To boost the currents we first record the four components of the current of the right
sheet in the original frame

Jr = (J°, J*, JY, J) = (0,0,0, K,/A), (56)

10



where A is the infinitesimal width of the sheets. J° is proportional to the surface
charge density o:

J' =oc/A, (57)
and is zero in the original frame. Under boost we have
JH=LrJ". (58)
This, together with the entries of the boost matrix
gl —B
L= b , (59)
-6 gl
yields for the right sheet
— — 48K, /e, (60)
KZ/C =K, . (61)

The left sheet has J* = —K,/(cA) and therefore the boosted charges and currents
differ in sign

Q:+7ﬁKo/Cu (62>

K*/c=—vKy.. (63)

We can check our result by recognizing that the electric field in the y direction in the

boosted frame that of a parallel plate capacitor with surface charges +¢ and —¢ on
the left and right sheets:

EY =0 =~pK,/c. (64)
This agrees with the first part of (d). The magnetic field in the = direction is similarly
B*=K*/c=7K,/c, (65)

and also agrees with the first part of (d).

(d) We will now compute the total energy in the boosted frame, 8 = y. It is important to
recognize that the mechanical stress tensor must also be boosted according to the general
rule:

e =LL L, e (66)
(i) The energy density in the columns is
@mech 2@0 mech + ( 75) 62rJrglJech (67)

Integrating over the volume of the columns we find the total energy density. In this
integration the separation between the sheets is length contracted d — d/v yielding
for the four columns

d M g1c? 1(K,/c)?L?
3, 2 MeolC™ 9 123
/Vd @mQCh ACOI’Y 4 dACOl 4 6 4Acol <68)
_47Mcolc - 76 [ (K /C) } (69)
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(ii) The electromagnetic stress follows from the transformed fields:

K,
Em :,YBJC =7
C

K,
E* = — 488" = =12
So the electromagnetic energy density in between the sheets is
@ (EQ 4 B2)
(Ko/c)(¥* 8% +77),

—1
2
=1
2

and the total electromagnetic energy is therefore

/V 00 = [L2dL(K, /0] (v +5?).

(74)

(iii) Adding the two contributions, the terms proportional to [L2d3(K,/c)*]y3? cancel, and

we find

/ d*r O, = v (4Mear® + [L*d3(K,/c)?]) .
\%

This, as expected, is simply
'YMtotCQ )

where M;,c? was the rest energy computed in part (b).

12
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Problem 6. (Extra-Credit) Kinematics of the Lambda decays

The lambda particle (A) is a neutral baryon of mass M = 1115MeV that decays with
a lifetime of 7 = 2.9 x 107'°s into a nucleon of mass m; = 939 MeV and a m-meson of
mass me = 140MeV. It was first observed by its charged decay mode A — p + 7~ in
cloud chambers. In the clould chamber (and in detectors today) the charge tracks seem
to appear out of nowhere from a single point (since the lambda is neutral) and have the
appearance of the letter vee. Hence this decay is known as a vee decay. The particles’
identities and momenta can be inferred from their ranges and curvature in the magnetic
field of the chamber. (In this problem M, my, my etc are short for Mc?, mic?, mac? etc., and
p1 and ps are short for ¢p; and ¢py ) A picture of the vee decay is shown below

(a) Using conservation of momentum and energy and the invariance of scalar products of
four vectors show that, if the opening angle 6 between the two tracks is measured, the
mass of the decaying particle can be found from the formula

M? =m? +m3 + 2 (E Ey — pipscosb)

(b) A lambda particle is created with total energy of 10 GeV in and moves along the z-axis.
How far on the average will it travel in the chamber before decaying? (Answer: 0.78 m)

8



(c)

Show that the momentum of the pion (or the proton) in the rest frame of the Lambda
1s

(21)

= o = O = A~ i

4M?
and evaluate the velocity/c of the pion v, /c numerically. (Answer: 0.573)

Use this to determine if a pion emitted in the negative x direction in the frame of the
decaying 10 GeV lambda will move forward (positive-z) or backwards (negative-x) in
the lab frame.

What range of opening angles will occur for a 10 GeV lambda if the decay is more or
less isotropic in the lambda’s rest frame? (Hint: write a program in any language (e.g.
in mathematica) to plot 6 vs. (p, in the rest frame). Or you can muck about with
algebra and learn less. I find § =0...5.03%)

T T T T T T T T T T T T T T T T T T T T T

5 5

w
oro
|

6 (degrees)
VNV T

0.0 0.5 1.0

pz/pmax

—0.5



Problem 7. (Extra Credit) Kinematics of a Relativistic Rod

Consider a rod of rest length D,. According to an inertial frame K’ the rod is aligned along
the 2’-axis, and moves moves with velocity u' along the y’ axis. The frame K’ is moving to the
right with velocity v relative to K in the z direction. The coordinate origins of the K and K’
systems are chose so that the midpoint of the rod crosses the spatial origin at time t =t = 0,
i.e. that space-time location of the rod center intersects t =t =x =a2' =y =1y = 0.

(a) Find the space-time trajectory of the endpoints of the rod in frame K.

(b) At t =0 in frame K, Show that the angle of the rod to the z-axis is
¢ = —atan(y,vu’/c?) (22)

where v, = 1/4/1 — (v/c)?

(c¢) Show that the length of the rod in frame K is

D\ NE
() ()
vy c
(d) In frame K, is the velocity of the rod v perpendicular to to its length vector L. Here
L points from one end of the rod to another at a given instant in time in frame K.

10
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