
Problem 1. Units

(a) The Gaussian unit system (or cgs) is often used in Quantum mechanics. Look it up
on the internet, and write down the Coulomb and Biot Savart laws in this system of
units.

(i) What is the relation between the electric and magnetic fields and the charges and
currents of the Gaussian system and the Heavyside-Lorentz system (which we will
use).

(ii) It is super-simple to convert from Gaussian to Heavyside Lorentz. Explain why
and give the corresponding Gaussian expression for the electrostatic energy den-
sity uE = 1

2

E

2

HL .

Units without the “4⇡” in the Maxwell equations such as Heavyside Lorentz and SI
(but with the 4⇡ in the Coulomb law) are called “rationalized”.

(b) Show that electric field and magnetic field (in Heavyside Lorentz) have units
p
(force)/area

or
p

energy/volume.

(c) A rule of thumb that you may need in the lab is that coaxial cable has a capacitance
of 12 pF/foot. That is why cable length must be kept to a minimum in high speed
electronics.

The order of magnitude of this result is set by ✏o = 8.85 pF/m. In the Heavyside-
Lorentz system capacitance is still QHL = CHLVHL. Show that CHL has units of
meters, and that

CMKS = 8.85 pF

✓
CHL

meters

◆
(1)

(d) The “impedance of the vacuum” is Zo =
p

µo/✏o = 376Ohms. This is why high fre-
quency antennas will typically have a “radiation resistance” of this order of magnitude.
As this problem will discuss, the unit of resistance is s/m for the Heavyside Lorentz
system, and “the impedance of the vacuum” is 1/c

In Heavyside-Lorentz units Ohm’s law still reads, jHL = �HLEHL, where �HL is the
conductivity, and j is the current per area. Show that the conductivity in Heavyside-
Lorentz has units [�HL] = 1/seconds and that �MKS = �HL✏o. Then show that a wire
of length L and radius Ro has resistance

RMKS =376Ohms (RHLc) (2)

=376Ohms

✓
Lc

⇡R

2

o�HL

◆
(3)

What is �HL for copper?

For most metals � is so large that it competes with the speed of light. As we will see
the relevant quantity is the magnetic di↵usion coe�cient D ⌘ c

2

/�, which for copper
is of order

c

2

�

⇠ cm2

(millisec)
. (4)
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Problem 2. Vector Identities

(a) Use the epsilon tensor to prove the analog of “b(ac)-(ab)c” rule for curls

r⇥ (r⇥ V ) = r(r · V )�r2

V (4)

Use this result, together with the Maxwell equations in the absence of charges and
currents, to establish that E and B obey the wave equation

1

c

2

@

2

tB �r2

B =0 (5)

1

c

2

@

2

tE �r2

E =0 (6)

(b) When di↵erentating 1/r we write

1

r

=
1p
x

i
xi

(7)

with x = x

i
ei, and use results like

@ix
j = �

j
i @ix

i = �

i
i = d = 3 (8)

where d = 3 is the number of spatial dimensions. (It is usually helps to write this as
d rather than 3 to get the algebra right). In this way, one finds that field due to a
electric charge (monopole) is the familiar r̂/r2

j-th component of �r(1/r) =

✓
�r1

r

◆

j

= �@j
1p
x

i
xi

=
1

2

(xi
�ji + xi�

i
j)

3
p
x

k
xk

=
xj

r

3

=
(r̂)j
r

2

(9)
where r̂ ⌘ n = x/r.

Using tensor notation (i.e. indexed notation) show that

r⇥ r̂

r

2

= 0 (10)

(c) Using the tensor notation (i.e. indexed notation) show that for constant vector p (and
away from r = 0) that

�r
⇣
p · n
4⇡r2

⌘
=

3(n · p)n� p

4⇡r3
(11)

Remark: �

dip

= p · n/(4⇡r2) is the electrostatic potential due to an electric dipole
p, and Eq. (11) records the corresponding electric field. Notice the 1/r3 as opposed
to 1/r2 for the monopole, and, taking p along the z-axis, notice how the electric field
points at ✓ = 0 (or n = ẑ) and ✓ = ⇡/2 (or n = x̂). How could you derive this using
the identities on the front cover of Jackson?
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Problem 3. Easy important application of Helmholtz theorems

(a) Using the source free Maxwell equations (i.e. those without ⇢ and j) and the Helmholtz
theorems, explain why E and B can be written in terms of a scalar field � (the scalar
potential) and a vector field A (the vector potential)

B =r⇥A (12)

E =� 1

c

@tA�r� (13)

Thus two of the four Maxwell equations are trivially solved by introducing � and A.

(b) Show that A and � are not unique, i.e.

Ai =(A
old

)i + @i⇤(t,x) (14)

� =(�
old

)� 1

c

@t⇤(t,x) (15)

gives the same E and B fields. Here ⇤(t,x) is any function. This change of fields is
known as a gauge transformation of the gauge fields (�, A).
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Problem 4. Tensor decomposition

(a) Consider a tensor T ij, and define the symmetric and anti-symmetric components

T

ij
S =1

2

�
T

ij + T

ji
�

(16)

T

ij
A =1

2

�
T

ij � T

ji
�

(17)

so that T

ij = T

ij
S + T

ij
A . Show that the symmetric and anti-symmetric components

don’t mix under rotation

TS
ij =R

i
`R

j
mT

`m
S (18)

TA
ij =R

i
`R

j
mT

`m
A (19)

This means that I don’t need to know TA if I want to find TS in a rotated coordinate
system.

Remarks: We say that the general rank two tensor is reducable to T

ij = T

ij
S + T

ij
A

into two tensors that dont mix under rotation

(b) You should recognize that an antisymmetric tensor is isomorphic to a vector

Vi ⌘ 1

2

✏ijkT
jk
A (20)

Explain qualitatively the identity ✏

ijk
✏`mk = �

i
`�

j
m��

j
`�

i
m using ✏

ij3
✏`m3

as an example,
and use this to show

T

ij
A = ✏

ijk
Vk (21)

Remark: In matrix form this reads

TA =

0

@
0 Vz �Vy

�Vz 0 Vx

Vy �Vx 0

1

A (22)

(c) Using the Einstein summation convention, show that the trace of a symmetric tensor
is rotationally invariant

T

i
i ⌘ T

i
i (23)

and that
�
T

ij
S ⌘ T

ij � 1

3

�

ij
T

`
` (24)

is traceless.

Remark: A symmetric tensor is therefore reducable to a symmetric traceless tensor
and a scalar times �ij.

T

ij
S =

�
T

ij
S + 1

3

�

ij
T

`
` where

�
T

ij
S ⌘ T

ij
S � 1

3

T

`
`�

ij (25)

I don’t need to know T

`
` in order to compute

�
T

ij
S = R

i
`R

j
m

�
T

`m
S

4



Remarks: The results of this problem show that a general second rank tensor is
decomposable into irreducable components

T

ij =
�
T

ij
S + ✏

ijk
Vk +

1

3

T

`
`�

ij (26)

=
1

2

�
T

ij + T

ji � 2

3

T

`
` �

ij
�
+

1

2
✏

ijk
✏k`mT

`m +
1

3
T

`
` �

ij (27)

No further reduction is possible. A general result is that a fully symmetric traceless
tensor is irreducable.

When this result is applied to the product of two vectors it says

E

i
B

j =
1

2

�
E

i
B

j +B

i
E

j � 2

3

E ·B�

ij
�
+

1

2
✏

ijk(E ⇥B)k +
1

3
E ·B�

ij (28)

which expresses the tensor product of two vectors as the sum of an irreducable (traceless
and symmetric) tensor, a vector, and a scalar, 1⌦ 1 = 2� 1� 0.

More physically it says that not all of EiBj is really described by a tensor. Rather,
part of EiBj is described by the vector E ⇥ B, and part is described by the scalar
E ·B. It is for this reason that the tensors we work with in physics (i.e. the moment
of inertia tensor, the quadrupole tensor, the maxwell stress tensor) are symmetric and
traceless.
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Problem 5. 3d delta-functions

A delta-function in 3 dimensions �3(r� ro) is an infinitely narrow spike at ro which satisfies

Z
d

3

r �

3(r � ro) = 1 (29)

In spherical coordinates, where the measure is

d

3

r = r

2

dr d(cos ✓) d� = r

2 sin ✓ dr d✓ d� , (30)

we must have

�

3(r�ro) =
1

r

2

�(r� ro)�(cos ✓� cos ✓o)�(���o) =
1

r

2 sin ✓
�(r� ro) �(✓� ✓o)�(���o) (31)

so that
R
d

3

r �

3(r) = 1. For a general curvlinear coordinate system

�

3(r � ro) =
1
p
g

Y

a

�(ua � u

a
o) (32)

where u

a
o are the coordinates of ro.

(a) What is formula �

3(r � ro) for cylindrical coordinates?

(b) A uniform ring of charge Q and radius a sits at height zo above the xy plane, and the
plane of the ring is parallel to the xy plane. Express the charge density ⇢(r) (charge
per volume) in spherical coordinates using delta-functions. Check that the volume
integral of ⇢(r) gives the total Q.

x

y

z

o
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Problem 6. Coordinate systems and craziness

This problem discusses curvilinear coordinates and may well be too easy for you. You
should read it though to help us collectively develop a common notation. For definiteness,
take cylindrical coordinates

x =⇢ cos(�) , (35)

y =⇢ sin(�) , (36)

z =z , (37)

though the results are easily generalized to spherical coordinates

x =r sin ✓ cos(�), (38)

y =r sin ✓ sin(�), (39)

z =r cos ✓ . (40)

The position vector is s = xex + yey + zez. The coordinate vectors g⇢, g� and gz are
defined to point in the direction of increasing ⇢, � and z

g⇢ ⌘
@s

@⇢

, g� ⌘ @s

@�

, gz ⌘
@s

@z

, (41)

so that displacement ds is

ds = d⇢g⇢ + d�g� + dz gz ⌘ duaga . (42)

Here we have defined the coordinates and vectors generically with u

a and ga with indices
a, b, c . . . drawn from the start of the alphabet

(u1

, u

2

, u

3) ⌘ (⇢,�, z) , and (g
1

,g
2

,g
3

) ⌘ (g⇢,g�,gz) . (43)

The vectors ga are orthogonal in all the coordinate systems we will use, but they are not
normalized. The squared displacement is then

ds2 ⌘ ds · ds = ga · gb du
adub ⌘ gab du

adub = (d⇢)2 + ⇢

2(d�)2 + (dz)2 . (44)

The factor of ⇢2 in ⇢

2(d�)2 arises because g� · g� = ⇢

2 as you will show below. The o↵
diagonal dot products (such as g� · g⇢ = 0) are zero for orthogonal coordinate systems, and
the remaining diagonal dot products are unity. We have defined the metric tensor

gab ⌘ ga · gb =

0

@
1 0 0
0 ⇢

2 0
0 0 1

1

A
, (45)

and for orthogonal coordinate systems this matrix is diagonal and records the lengths of the
chosen coordinate vectors.
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The unit coordinate vectors that we normally use, e⇢, e�, and ez, are the normalized
versions of g⇢, g�, and gz. Dividing by the lengths of each vector we have

e⇢ ⌘ b
⇢ =g⇢, (46)

e� ⌘ b
� =

g�

⇢

, (47)

ez ⌘ ẑ =gz. (48)

Then a generic vector V is expanded as1

V = V

a
ea = V

⇢
e⇢ + V

�
e� + V

z
ez . (49)

We have discussed cylindrical coordinates for definiteness. For a general orthogonal
coordinate system2, labeled by u

1

, u

2

, u

3, the coordinate vectors are defined as above

ga ⌘
ds

du

a
, (50)

and the squared length (also called the line-element) takes the generic form3

ds

2 = (ha)
2 dua dua = (h

1

)2 (du1)2 + (h
2

)2 (du2)2 + (h
3

)2 (du3)2 . (51)

where the scale factors are (ha)2 = ga · ga (no sum over a). The metric is clearly

gab =

0

@
(h

1

)2 0 0
0 (h

2

)2 0
0 0 (h

3

)2

1

A (52)

The normalized unit vectors are
ea =

ga

ha

(53)

Then
gab = ga · gb = h

2

a �ab , and ea · eb = �ab . (54)

The volume of cell (the volume element) is

dV =
p
g du1du2du3

, (55)

1In general relativity the symbol V a most often denotes an expansion of V in terms of the coordinate
vectors g

a

, i.e. V = V ag
a

. An expansion of V in the normalized coordinate vectors would then be denoted,
V = V â

e

â

, with an extra hat. This convention is almost never followed in electricity and magnetism. So
what we (and everyone else) call V � (the component of the vector in the � direction) is what a pedantic

general relativist would call V �̂.
2For non-orthogonal coordinate systems a nice elementary book is James G. Simmonds A Brief on Tensor

Analysis.
3Compare this to Eq. (44). (du3)2 means the square of the change in coordinate number three, (dz)2

above. The scale factors h
a

will always be written with a lower index. Here and below (when confusion does
not arise) repeated indices involving h

a

are not summed over, but simply multiply the term in the sum, e.g.
ds = h

a

dua

e

a

= d⇢ e
⇢

+ ⇢ d� e

�

+ dz e
z
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where g = det gab is the determinant of the metric matrix

p
g =

p
det gab = h

1

h

1

h

3

(56)

for orthogonal coordinate systems.
All of the tensor analysis done in class which does not involve di↵erentiation (i.e. tensor

decomposition, cross products etc) goes through without change. As long as no derivatives
are involved, the change of coordinates is just an orthonormal change of basis at each point
in space from the x̂, ŷ, ẑ vectors (labeled generically as ei and ej with indices i, j, k, . . .) to
the e⇢, e�, ez vectors (labeled generically as ea and eb with indices a, b, c . . .). The physical
vector V or tensor T is the same in both coordinate systems.

V = V

i
ei = V

a
ea, T = T

ij
eiej = T

ab
eaeb. (57)

One simply needs to express the curvilinear basis vectors in terms of the Cartesian ones as
you will do below.

The curvilinear di↵erential operators are more complicated, because the basis vectors are
functions of the spatial coordinates.

(a) The gradient of scalar is

r� = ea
1

ha

@�

@u

a
=

e

1

h

1

@�

@u

1

+
e

2

h

2

@�

@u

2

+
e

3

h

3

@�

@u

3

(58)

(b) The divergence

r · V =
1
p
g

@(
p
gV

a
/h

a)

@u

a
=

1

h

1

h

2

h

3


@(h

2

h

3

V

1)

@u

1

+
@(h

1

h

3

V

2)

@u

2

+
@(h

1

h

2

V

3)

@u

3

�
(59)

(c) The curl

(r⇥ V ) =ea ✏
abc 1

hbhc

@b(hcV
c) (60)

Or

(r⇥ V ) =
e

1

h

2

h

3


@(h

3

V

3)

@u

2

� @(h
2

V

2)

@u

3

�
+

e

2

h

1

h

3


@(h

1

V

1)

@u

3

� @(h
3

V

3)

@u

2

�

+
e

3

h

1

h

2


@(h

2

V

2)

@u

1

� @(h
1

V

1)

@u

2

�
(61)

(d) The Laplacian follows from the divergence and gradient

r2� = r ·r� =
1
p
g

@

@u

a

 p
g

(ha)2
@�

@u

a

�
(62)

The Laplacian is often expressed in term of the inverse metric, i.e. the matrix inverse
of the metric gab

gab(g
�1)bc = �

c
a (63)

10



The inverse metric is

(g�1)ab =

0

B@

1

(h1)
2 0 0

0 1

(h2)
2 0

0 0 1

(h3)
2

1

CA (64)

Thus the Laplacian is

r2� = r ·r� =
1
p
g

@

@u

a

✓
p
g(g�1)ab

@�

@u

b

◆
(65)

which provides a simple way to remember the Laplacian in spherical coordinates.

Now very briefly (showing as much or as little work as you care to) answer the following
questions:

(a) Using algebraic means (i.e. without drawing a little picture) and starting from the
definitions in Eq. (41), express g⇢, g�, and gz and ⇢̂, �̂, and ẑ in Cartesian components,
x̂, ŷ, and ẑ. Prove Eq. (44) algebraically. Confirm to yourself that this algebra agrees
with the visual picture that you have of these vectors.

(b) One of the things that I see all the time (including several times on last week’s comps)
that makes me completely crazy is the following tragically flawed logic

d

d�

[cos(�) b⇢] = � sin� b
⇢ crazily wrong! (66)

What is the correct answers to this derivative? Express your answer in terms of e⇢

and e�.

(c) Similarly, every year a few tragically flawed exams have expressions like

Z
2⇡

0

d� cos� b
⇢ = 0 crazily wrong! (67)

What is the correct answer to this integral?

(d) Determine gr, g✓, g�, the metric gab and line elements ds2 for spherical coordinates.
Also determine the volume dV and Laplacian in spherical coordinates.

(e) (Zangwill) Express

@

b
r

@✓

@

b
r

@�

@

b
✓

@✓

@

b
✓

@�

@

b
�

@✓

@

b
�

@�

(68)

in terms of r̂, b✓ and b
�. Can you visualize these results?
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Problem 6. Fourier Transforms of the Coulomb Potential

The fourier transfrom takes a function in coordinate space and represents in momentum
space1

F (k) =

Z 1

�1
dx

⇥
e

�ikx
⇤
f(x) (33)

The inverse transformation repesents a function as a sum of plane waves

F (x) =

Z 1

�1

dk

2⇡

⇥
e

ikx
⇤
F (k) (34)

The Fourier transform generalizes the concept of a fourier series to non-periodic, but square
integrable functions – i.e.

R
dx|f(x)|2 should converge.

The Fourier transform of a 3D function r = (x, y, z) is:

F (k) =

Z
d

3

r

⇥
e

�ik·r⇤
F (r) (35)

F (r) =

Z
d

3

k

(2⇡)3
⇥
e

ik·r⇤
F (k) (36)

To do this problem you will need to know (as dicussed in class) that the integral of a pure
phase e

ikx is proportional to a delta-fcn. In 3D we have

�

3(r) =

Z
d

3

k

(2⇡)3
e

ik·r (37)

(2⇡)3�3(k) =

Z
d

3

r e

�ik·r (38)

(a) Use tensors notation to show that the Fourier transform of rF (r) is

ikF (k) , (39)

and that the Fourier transform of the curl of a vector vector field F (r) is r⇥F (r) is

ik ⇥ F (k) (40)

(b) The genral rule is to replace r ! ik. What is the Fourier transform of r2

F (r)

(c) Prove the Convolution Theorem, i.e. the Fourier Transform of a product is a convolu-
tion Z

d

3

r e

�i�k·r |F (r)|2 =
Z

d

3

k

(2⇡)3
F (k)F ⇤(k ��k) (41)

making liberal use of the completeness integrals
Z

d

3

r e

�ik·r = (2⇡)3�3(k) (42)

1
The notation of putting eikx in square brackets is not standard, but I have used it in the notes to

highlight the similarity between this expansion and other eigenfunction expansions.
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Remark: Setting �k = 0 we recover Parseval’s Theorem

Z
d

3

r|F (r)|2 =
Z

d

3

k

(2⇡)3
|F (k)|2 (43)

Remark: This is often used in reverse, the fourier transform of a convolution is a
product of the fourier transforms

F.T. of
R
d

3

ro F (ro)G(r � ro) = F (k)G(k) (44)

(d) The Fourier transform of the Coulomb potential is di�cult (try it and find out why!).
This is because 1/(4⇡r) is not in the space of square integrable functions (Why?).
Thus, we will consider the Fourier transform of 1/(4⇡r) to be the limit as m ! 0 of
the Fourier transform of a screened Coulomb potential known as the Yukawa potential

�(x) =
e

�m|r|

4⇡|r| (45)

The Yukawa potential is square integrable. Show that the Fourier transform of the
Yukawa potential is

�(k) =
1

k

2 +m

2

(46)

with k =
p
k

2. Thus, we conclude with m ! 0 that
Z

d

3

x e

�ik·r 1

4⇡r
=

1

k

2

(47)

Note that the inverse transform can be computed by direct integration

1

4⇡|r � ro|
=

Z
d

3

k

(2⇡)3
e

ik·(r�r
o

)

k

2

(48)

(e) In electrostatics the electric field is the negative gradient of the potential, E = �r�.
From r ·E = ⇢, we derive the Poisson equation �r2� = ⇢. For a unit charge at the
origin, the coulomb potential, 1/(4⇡r), satisfies

�r2� = �

3(r) (49)

Deduce Eq. (47) by fourier transforming this equation.
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