Problem 1. Units

(a) The Gaussian unit system (or cgs) is often used in Quantum mechanics. Look it up
on the internet, and write down the Coulomb and Biot Savart laws in this system of
units.

(i) What is the relation between the electric and magnetic fields and the charges and
currents of the Gaussian system and the Heavyside-Lorentz system (which we will
use).

(ii) It is super-simple to convert from Gaussian to Heavyside Lorentz. Explain why
and give the corresponding Gaussian expression for the electrostatic energy den-
sity up = 3EF, -

Units without the “47” in the Maxwell equations such as Heavyside Lorentz and SI
(but with the 47 in the Coulomb law) are called “rationalized”.

(b) Show that electric field and magnetic field (in Heavyside Lorentz) have units 1/ (force) /area
or y/energy/volume.

(¢) A rule of thumb that you may need in the lab is that coaxial cable has a capacitance
of 12 pF/foot. That is why cable length must be kept to a minimum in high speed
electronics.

The order of magnitude of this result is set by ¢, = 8.85pF/m. In the Heavyside-
Lorentz system capacitance is still Qg = CyrVyr. Show that Cyr has units of
meters, and that

CMKS = 885pF< CHL ) (1)
meters
(d) The “impedance of the vacuum” is Z, = \/fi,/€, = 376 Ohms. This is why high fre-
quency antennas will typically have a “radiation resistance” of this order of magnitude.
As this problem will discuss, the unit of resistance is s/m for the Heavyside Lorentz
system, and “the impedance of the vacuum” is 1/¢

In Heavyside-Lorentz units Ohm’s law still reads, jyr = oy Egr, where ogy is the
conductivity, and 7 is the current per area. Show that the conductivity in Heavyside-
Lorentz has units [0y ] = 1/seconds and that oy s = o€, Then show that a wire
of length L and radius R, has resistance

RMKS =376 Ohms (RHLC) (2)
Lc
=376 Oth (@) (3)

What is oy, for copper?

For most metals o is so large that it competes with the speed of light. As we will see
the relevant quantity is the magnetic diffusion coefficient D = ¢/, which for copper

is of order

c? cm?

(4)

o (millisec)
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Problem 2. Vector Identities

()

Use the epsilon tensor to prove the analog of “b(ac)-(ab)c” rule for curls
Vx(VxV)=V(V-V)-VV (4)

Use this result, together with the Maxwell equations in the absence of charges and
currents, to establish that E and B obey the wave equation

1
gafB —V?’B =0 (5)

1
ga,?E — V?’E =0 (6)

When differentating 1/r we write

- g

with £ = z'e;, and use results like
Ol =0 Oa'=0i=d=3 (8)

where d = 3 is the number of spatial dimensions. (It is usually helps to write this as
d rather than 3 to get the algebra right). In this way, one finds that field due to a
electric charge (monopole) is the familiar 7 /72

1 1 (@65 +mdh) (),
—th t f — 1 g —_ — g —a = 2 J J g —] —= —']
j-th component o V(1/r) ( Vr>j i iz, Sty 3 2

where 7 =n = x/r.
Using tensor notation (i.e. indexed notation) show that

A

Vx5 =0 (10)

Using the tensor notation (i.e. indexed notation) show that for constant vector p (and
away from r = 0) that

p-ny_3n-pn-—p

-V <47Tr2) N 473 (11)
Remark: ¢qy, = p - n/(4nr?) is the electrostatic potential due to an electric dipole
p, and Eq. (11) records the corresponding electric field. Notice the 1/r3 as opposed
to 1/r? for the monopole, and, taking p along the z-axis, notice how the electric field
points at # =0 (or n = 2) and 0 = 7/2 (or n = &). How could you derive this using
the identities on the front cover of Jackson?
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Problem 3. Easy important application of Helmholtz theorems

(a) Using the source free Maxwell equations (i.e. those without p and j) and the Helmholtz
theorems, explain why E and B can be written in terms of a scalar field ® (the scalar
potential) and a vector field A (the vector potential)

B=VxA (12)
E=— %@A ~ Vo (13)
Thus two of the four Maxwell equations are trivially solved by introducing ® and A.
(b) Show that A and ® are not unique, i.e.
A; =(Aon)i + OiA(t, x) (14)

@ (@) ~ ~OA(1,) (15)

gives the same E and B fields. Here A(t, @) is any function. This change of fields is
known as a gauge transformation of the gauge fields (¢, A).
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Problem 4. Tensor decomposition

(a)

Consider a tensor 7%, and define the symmetric and anti-symmetric components

T = (T7 + 17 (16)
T{ =1 (T — 17 (17)

so that T% = T, g?' + Tﬁlj. Show that the symmetric and anti-symmetric components
don’t mix under rotation

Ts" =R',R’, T" (18)
Ta" =R',R,T{" (19)

This means that I don’t need to know T4 if I want to find T in a rotated coordinate
system.

Remarks: We say that the general rank two tensor is reducable to TY = T’ éj + Tilj
into two tensors that dont mix under rotation

(b) You should recognize that an antisymmetric tensor is isomorphic to a vector

Explain qualitatively the identity €7¥e;,,, = 6707, —§,0°, using €/3¢;,,3 as an example,
and use this to show

TY = €ty (21)
Remark: In matrix form this reads
0 V. =V,
Ty=1-V. 0 Va (22)
Vv, V. o0

Using the Einstein summation convention, show that the trace of a symmetric tensor
is rotationally invariant

T =T; (23)

T =TY — 16T (24)

is traceless.

Remark: A symmetric tensor is therefore reducable to a symmetric traceless tensor
and a scalar times 6%.

9B LT whew B9 =79 - T )

I don’t need to know 7% in order to compute 7% = Ri,Ri Ttm



Remarks: The results of this problem show that a general second rank tensor is
decomposable into irreducable components

T =18 + €7V, + L7467 (26)
1 - g . 1 .. 1 -
=3 (T + 19" — 27,67 + §e”keumTfm - ngé” (27)

No further reduction is possible. A general result is that a fully symmetric traceless
tensor is irreducable.

When this result is applied to the product of two vectors it says
. 1 S S . 1 .. 1 .
E'B =3 (E'B’+ B'E' — 2E - B§V) + 56”’“(1? xB)y+zE-B&Y  (28)

which expresses the tensor product of two vectors as the sum of an irreducable (traceless
and symmetric) tensor, a vector, and a scalar, 1® 1 =2@ 1@ 0.

More physically it says that not all of FE;B; is really described by a tensor. Rather,
part of E;B; is described by the vector E x B, and part is described by the scalar
E - B. 1t is for this reason that the tensors we work with in physics (i.e. the moment
of inertia tensor, the quadrupole tensor, the maxwell stress tensor) are symmetric and
traceless.
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Problem 5. 3d delta-functions

A delta-function in 3 dimensions 6*(r —r,) is an infinitely narrow spike at r, which satisfies

/d3r Br—r,) =1 (29)
In spherical coordinates, where the measure is
d*r = r*dr d(cos0) d¢ = r*sin 0 dr df d¢, (30)

we must have

1
r2sin 6

B(r—mr,) = i6(7" —714)0(cos @ —cos8,)0(p— ¢p,) =

r2

5(T - To) 5(0 - ‘90)5(¢ - ¢o) (31)

so that [ d*r &3(r) = 1. For a general curvlinear coordinate system
1
Br—r)=—|]6u*—ul 32
( ) 75 1:[ ( ) (32)

where u? are the coordinates of 7,.
(a) What is formula §*(r — 7,) for cylindrical coordinates?

(b) A uniform ring of charge @) and radius a sits at height z, above the xy plane, and the
plane of the ring is parallel to the zy plane. Express the charge density p(r) (charge
per volume) in spherical coordinates using delta-functions. Check that the volume
integral of p(r) gives the total Q.
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Problem 6. Coordinate systems and craziness

This problem discusses curvilinear coordinates and may well be too easy for you. You
should read it though to help us collectively develop a common notation. For definiteness,
take cylindrical coordinates

z =pcos(9), (35)
y =psin(¢), (36)
z=z, (37)

though the results are easily generalized to spherical coordinates

x =rsinf cos(¢), (38)
y =rsinf sin(¢), (39)
z =rcosf. (40)

The position vector is s = xe, + ye, + ze.. The coordinate vectors g,, g, and g, are
defined to point in the direction of increasing p, ¢ and z

s (41)

so that displacement ds is
ds =dpg, +dog, +dzg, =du’g,. (42)

Here we have defined the coordinates and vectors generically with u* and g, with indices
a,b,c... drawn from the start of the alphabet

(ula UQ, u3) = (pa ¢7 Z) ’ and (g17 82, gB) = (gp7 g¢7 gz) . (43)

The vectors g, are orthogonal in all the coordinate systems we will use, but they are not
normalized. The squared displacement is then

ds’ =ds-ds =g, - g, du’du’ = gu du®du® = (dp)? + p*(de)? + (dz)?. (44)

The factor of p® in p*(d¢)? arises because g4 - g5 = p* as you will show below. The off
diagonal dot products (such as g, - g, = 0) are zero for orthogonal coordinate systems, and
the remaining diagonal dot products are unity. We have defined the metric tensor

0

1 0
Jab =88 =10 p* 0], (45)
0 0 1

[

and for orthogonal coordinate systems this matrix is diagonal and records the lengths of the
chosen coordinate vectors.



The unit coordinate vectors that we normally use, e,, e,, and e, are the normalized
versions of g, g4, and g,. Dividing by the lengths of each vector we have

eP = b\ :gp7 (46)
~ 8
€y = ¢ :_¢7 (47)
p
e.=z2=g,. (48)
Then a generic vector V' is expanded as'
V =V, =V, + V%, +VZe,. (49)

We have discussed cylindrical coordinates for definiteness. For a general orthogonal
coordinate system?, labeled by u!, u?, u?, the coordinate vectors are defined as above

ds
ga = d—, (50)

ua
and the squared length (also called the line-element) takes the generic form®
ds® = (ha)” du® du® = (h1)* (du')? + (o) (du®)® 4 (hs)? (du®)?. (51)

where the scale factors are (h,)? = g, - g, (no sum over a). The metric is clearly

(hy)? 0 0
Jab = 0 (he)* O (52)
0 0 (hg)2
The normalized unit vectors are o
=2 53
ca= £ (53)
Then
Jab = 8, 8p = hi Oab 5 and €, e, =0 . (54)
The volume of cell (the volume element) is
dV = /g du'du’du?® (55)

'In general relativity the symbol V® most often denotes an expansion of V in terms of the coordinate
vectors g,, i.e. V. =V®g, . An expansion of V in the normalized coordinate vectors would then be denoted,
V = Vie;, with an extra hat. This convention is almost never followed in electricity and magnetism. So
what we (and everyone else) call V? (the component of the vector in the ¢ direction) is what a pedantic
general relativist would call V.

2For non-orthogonal coordinate systems a nice elementary book is James G. Simmonds A Brief on Tensor
Analysis.

3Compare this to Eq. (44). (du®)? means the square of the change in coordinate number three, (dz)?
above. The scale factors h, will always be written with a lower index. Here and below (when confusion does
not arise) repeated indices involving h, are not summed over, but simply multiply the term in the sum, e.g.
ds = hqdue, = dpe, + pdopes +dze,



where g = det g4 is the determinant of the metric matrix

V9 =/ det gap = hihihg (56)

for orthogonal coordinate systems.

All of the tensor analysis done in class which does not involve differentiation (i.e. tensor
decomposition, cross products etc) goes through without change. As long as no derivatives
are involved, the change of coordinates is just an orthonormal change of basis at each point
in space from the &, g, 2 vectors (labeled generically as e; and e; with indices 4, j, k, .. .) to
the e,, e4, e, vectors (labeled generically as e, and e, with indices a,b, c...). The physical
vector V' or tensor T is the same in both coordinate systems.

V= Ve, = Ve, T =TVee; = T"ese, (57)

One simply needs to express the curvilinear basis vectors in terms of the Cartesian ones as
you will do below.

The curvilinear differential operators are more complicated, because the basis vectors are
functions of the spatial coordinates.

(a) The gradient of scalar is

Lot e o e db e o

vq):eah_a%:h_laul+h_28u2+h_38u3 (58)
(b) The divergence
V.V i@(\/ﬁva/h“) _ 1 O(hohsVY)  O(hihsV?) n O(h1haV?3) (59)
9 u? 1hah3 U u U
VI 0 hihaoh ou! ou? ou?
(c¢) The curl
1
(V x V) =€, ™ ——0y(h.V°) (60)
hyh.
Or
(v % V) _ € 8(h3V3) B 3(h2V2) €9 a<h1V1> _ 8(h3V3)
h2h3 ou? ou3 hlhg ou3 ou?
2 1
hihs out ou?
(d) The Laplacian follows from the divergence and gradient
1 0 [ g 09
2p=V.Vd=— 2
Ve =V-V N {(ha)Zaua} (62)

The Laplacian is often expressed in term of the inverse metric, i.e. the matrix inverse
of the metric g,

gan(g™")" =0, (63)

10



The inverse metric is
1

1\ab (s
g )= 0
0

)2

OS‘HO
)

= OO O
—

>

g
S—

—
>
w
N
)

Thus the Laplacian is

1 0
V0=V .-Vb=—
\/§8ua

which provides a simple way to remember the Laplacian in spherical coordinates.

(vato ) (65

Now very briefly (showing as much or as little work as you care to) answer the following
questions:

(a) Using algebraic means (i.e. without drawing a little picture) and starting from the
definitions in Eq. (41), express g, g,, and g, and p, ¢, and 2 in Cartesian components,
Z, Y, and z. Prove Eq. (44) algebraically. Confirm to yourself that this algebra agrees
with the visual picture that you have of these vectors.

(b) One of the things that I see all the time (including several times on last week’s comps)
that makes me completely crazy is the following tragically flawed logic

d —~ D~ .
€ [cos(¢) p] = —singpp  crazily wrong! (66)
What is the correct answers to this derivative? Express your answer in terms of e,

and ey.

(c) Similarly, every year a few tragically flawed exams have expressions like

2w
/ dpcospp =0 crazily wrong! (67)
0

What is the correct answer to this integral?

(d) Determine g,, gy, g4, the metric g, and line elements ds? for spherical coordinates.
Also determine the volume dV and Laplacian in spherical coordinates.

(e) (Zangwill) Express

o or 06 o0 05 0p .
90 9 90 96 00 9o

in terms of 7, 6 and $ Can you visualize these results?

11
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Problem 6. Fourier Transforms of the Coulomb Potential

The fourier transfrom takes a function in coordinate space and represents in momentum
space!

F(k) = /_OO dz [e7**] f(x) (33)

[e.e]

The inverse transformation repesents a function as a sum of plane waves

F(x) = /_ N g [e"*] F (k) (34)

The Fourier transform generalizes the concept of a fourier series to non-periodic, but square

integrable functions — i.e. [ dx|f(x)|* should converge.
The Fourier transform of a 3D function r = (z,y, 2) is:

F(k) = / &Pr [e7™7T] F(r) (35)
Fr) = / (;lﬂ'; "] P(k) (36)

To do this problem you will need to know (as dicussed in class) that the integral of a pure
phase €** is proportional to a delta-fen. In 3D we have

53 (r) :/%ei’” (37)

(2m)35% (k) = / d*r e kT (38)

(a) Use tensors notation to show that the Fourier transform of VF(r) is
ikF(k), (39)
and that the Fourier transform of the curl of a vector vector field F(r) is V x F(r) is

ik x F(k) (40)

(b) The genral rule is to replace V — ik. What is the Fourier transform of V2F(r)

(c) Prove the Convolution Theorem, i.e. the Fourier Transform of a product is a convolu-
tion

3 —iAk-r 2 d?)_k * .
/dre |F(r)] _/(%)BF(k)F (k — Ak) (41)

making liberal use of the completeness integrals

/ Br e = (27)36% (k) (42)

IThe notation of putting e’** in square brackets is not standard, but I have used it in the notes to

highlight the similarity between this expansion and other eigenfunction expansions.

7



Remark: Setting Ak = 0 we recover Parseval’s Theorem
A’k
&r|F(r)|? = F(k)]? 4
[npwr = [ Girw (43)

Remark: This is often used in reverse, the fourier transform of a convolution is a
product of the fourier transforms

F.T. of [d*r, F(r,) G(r —7,) = F(k)G(k) (44)

The Fourier transform of the Coulomb potential is difficult (try it and find out why!).
This is because 1/(47r) is not in the space of square integrable functions (Why?).
Thus, we will consider the Fourier transform of 1/(47r) to be the limit as m — 0 of
the Fourier transform of a screened Coulomb potential known as the Yukawa potential

d(w) = —— (45)

The Yukawa potential is square integrable. Show that the Fourier transform of the
Yukawa potential is

1
dk)=——— 4
*) = s (46)
with k& = v/k2. Thus, we conclude with m — 0 that
, 1 1
d3 —tkr _— 47
/ Te drr k2 (47)

Note that the inverse transform can be computed by direct integration

1 d3k ez‘k~(r—ro)
=/ 48)

Arc|r — 7, 213 k2

In electrostatics the electric field is the negative gradient of the potential, E = —V .
From V - E = p, we derive the Poisson equation —V?® = p. For a unit charge at the
origin, the coulomb potential, 1/(4xr), satisfies

—V2® = §(r) (49)

Deduce Eq. (47) by fourier transforming this equation.
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