Problem 1. Defects

This problem will study defects in parallel plate capacitors. A parallel plate capacitor has
area, A, and separation, D, and is maintained at the potential difference, AV = E,D. There
are n defects per unit area on the lower plate and none on the upper. The defects consist of
hemispherical shells of radius a bending towards the upper plate. You should assume that
a < D, and that na® < 1 so that the defects are very widely spaced.
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(a) Determine the charge per unit area on and near the defect. Plot the surface charge
on the hemisphere as a function of 6, and on the plane as a function of r. (Hint: To
solve for the potential in the vicinity of a defect use that fact that for a < z < D the
potential reaches its unperturbed form ®(z) = —E,z, so that the upper boundary can
be ignored.)

(b) Show that the charged induced on the hemisphere is:

Q= E,a*3n (1)

(c) Use these results to show that the capacitance is unchanged by the defect to the order
we are working, 7.e.

A
C~— 2
: )
(d) In deriving this result we have used that D > a. The size of corrections to the potential

you found are of order ~ a/D3. Explain why.
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area, A, and separation, D, and is maintained at the potential difference, AV = E,D. There
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hemispherical shells of radius a bending towards the upper plate. You should assume that
a < D, and that na? < 1 so that the defects are very widely spaced.

Figure: A defect on a capacitor plate.

(a) Determine the charge per unit area on and near the defect. Plot the surface charge
on the hemisphere as a function of 4, and on the plane as a function of . (Hint: To
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potential reaches its unperturbed form ¢(z) = —E,z, so that the upper boundary can
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(b) Show that the charged induced on the hemisphere is:

Q= E,a%3m (55)

(c) Use these results to show that the capacitance is unchanged by the defect to the order

we are working, i.e.
A
~ 56
Cx (56)
(d) In deriving this result we have used that D > a. The size of corrections to the potential

you found are of order ~ a3/D3. Explain why.

Solution:
Part (a)
We write
p=—E,z+A¢ (57)
=— E,acosf + A¢ (58)

Since on the hemisphere the potential ¢ = 0 we must require that

A¢ = E,acos®  on hemisphere (59)



and A¢ = 0 on the plane.
We can introduce a series expansion

Ap = Z (A['f‘ + 131—1) Py(cos6) (60)

The fact that A¢ = 0 on the plane means that A, = B, = 0 for £ even. For ¢ odd, requiring
regularity leads to A, = 0. B is adjusted to reproduce the boundary conditions as r = a:

A|,_, = Eoacosf = Z ﬁlPe(cos 6) (61)
¢

Recognizing that Pj(cosf) = cosf we compare the two series and find B, = E,a(a?) leading
to

2
#(r,0) = —E,rcosf + Eoa (%) cos @ (62)

Then we determine the charge on the sphere

E,=—-08,¢ = E,cos0 + 2an3;1§ (63)
=3E,cosd (64)
Then we also determine the charge density on the plane
1
E. = —By=—(~-09) (65)
a3
=FE, - E°F (66)
(67)
Part (b)
We integrate the surface density on the sphere , with = cos?
Qsphere = / dao (68)
hemisphere
1
Q =3E,a*27 / dzz (69)
0
Qsphere = 00237[' (70)
We similarly find the charge on the plane
00 3
Qplane = / (2nr)dr (E - E::? ) (1)
a
=FE,(A — ma®) — 2E,a’ (72)
=E,A — 3nE,a®3w (73)



Part (c)
The total charge is unchanged:

Qiot = (Eoa?371) + E,A — (E,0?37) = E,A (74)

Thus the charge and the capacitance is unchanged

Qt°¢=C’AV=>C'=

ol

Part (d)

At the upper plate the potential should be constant. But it is not. The defect violates
the boundary condition on the upper plate by a small amount, which can be estimated by
comparing the size of the first and second terms of the potential:

a\ 2
&(r,0) = —E,rcosf + E,a (;) cos @ (76)

The relative size of these two terms at the upper plate, where r ~ D is of order ~ a3/D?



Problem 2. Force between two rings of charge

A single ring of charge of radius a and total charge @) is centered at the origin and lies in
the xy plane.

(a)

Show that the potential far from the ring can be written as the multipole expansion

E
Py (0
2 2 Pieost) ®)

Q 1Qad’ 3 Qa'
~ Py(cos0) + ST

Amr 2473

Py(cos ) + (4)

where 6 is measured relative to the z axis, and were in the second line we have used
the known values for P»(0). What are the values of the spherical multipoles g, (up to
¢ = 2), and the cartesian multipoles p; and Q;;.

For a ring of charge of radius a, use an elementary argument to determine the potential
along the z axis. Verify that it agrees with the expansion of part (a) when part (a) is
evaluated on the z axis.

Show that the force between two coaxial charged rings of charge ) and —(@) widely
separated by a distance, 27, along the 2 axis is
—Q2 Q2 (I2

~ 3 5
16722 + 64774 + (5)

where a negative answer indicates an attractive force.

An elegant way to find this is to use the Green Reciprocity theorem which is equivalent
to the statement that Gp(r,ry) = Gp(ro,r). In this context, use this condition to
show that the potential energy of a quadrupole charge distribution in the electrostatic
potential from a monopole is the same as the potential energy of a monopole in an
electrostatic potential from a quadrupole.
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Problem 3. A ring of charge close to a plane

(a)

(b)

Consider a long line of charge separated from a grounded plane by separation z,. The
charge per length is A\. Determine the force per length between the grounded plane
and the charged line.

By integrating the force found in part(a), show that the potential energy per length of
the line of charge and the grounded plane is

2
Uint = i log 2z, + const (6)

This potential energy for is exactly half of the potential energy between the line of
charge and its image. Qualitatively explain why this is the case.

Conser a ring of radius a and total charge @), separated from a plane by a height z,.
Use the results of this problem to determine the total force between the ring and the
plane when z, < a. Explain qualitatively why the results of this problem apply.
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By integrating the force found in part(a), show that the potential energy per length of
the line of charge and the grounded plane is
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Uit = i log 2z, + const (5)

This potential energy for is exactly half of the potential energy between the line of
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Use the results of this problem to determine the total force between the ring and the
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Problem 4. The free green function in cylindrical coordinates

(a) Show that the green function in cylindrical coordinates can be expanded as

Glrm) = = / kdk [ T (kp)] [ Jon(kpo)] gim(2,20)  (7)

m=—00

and determine the appropriate equation for gi,(z, 2,). (Hint: this may be a good time
to examine the course notes and to write 63(r — r,) = %(5(/) — 00)0(z — 2,)0(0p — ¢,) as
an expansion in eigen functions in the p, ¢ directions)

(b) (Optional) If you dont know what a Bessel function looks like, plot Jy(z), Ji(z), Jo(x)
and record their series expansions at small and large x. Be aware of the following
indentity in 2 dimensions: the 2D function

e“"J.""‘J_ (8)

can be written as a fourier series at each radius r,. Defining r; = r (cos ¢, sin ¢), we
have

eikJ_TJ_COS¢ — Z eim¢ ijm(k’TJ_) (9>

m=—0Q

(c) Consider a two dimensional function f(r,) which is independent of the azimuthal angle
¢. Tts Fourier transform, f(k,) = [ d?x e "+ is independent of the azimuthal of
the k. Using Eq. (9), determine an integral relation between f (k1) and f(ry) (and
vice versa) using the Bessel function Jo(k ). We say that f(k.) and f(r.) are (up
to a constant) Hankel transforms of each other (google Hankel transform).

(d) Use the methods discussed in class (Zangwill calls this the method of direct integration)
to show that the free Green function in cylindrical coordinates can be written

G ! LSS [ ke [0 g (kp)] [ ()] e
A = g e 2o, O ) [ i)
(10)
where z- and z. is the greater and lesser of z and z,.
It is useful to compare this result to the one derived in class
o /L 1 TZ
Yoo (0, )Y, (00, o)] ———— 11

and to a similar problem that could have been asked

47T|r_r = Z / [em(@=0)e k2] [ (kp ) K (kps) (12)



A Problem

e ———

- VIG = SBC\"—F&)

-0°GQ = | Se-p ) S (z-2) 8(d-4)
¢
\Vhean Wriking *
oo
0 |
G= Z \'\<o\\< d (ep) T (cp) em@ %)
N ™ J ™o \
' &km( Z)Zc))
I S
U S-p) S16=4) 215 [J e [T (xp1e"
o ¥ ™
MS\n%\)
—V’—.(‘\Q_eg_%iazf,gf_\
\/ F b‘P a‘ l;¢1 azb-k

MJ \oe,Sse,\s 66\ Loakian frig e,C’i)\nS

..-VyDQ eim¢ - \Mzeim¢
3¢
[ I E pa_ | el Sm(\:‘P) = k* KY”(\t{ﬂ
\ { op Op o™ R
C 3 \ N\ i
kegsds




Seewn thek

A

-G =13 \J\“’)“ (3. \[Ttepy 6™ )

( cae L3¢\ 30 %) (o

7_\ ) -

\/v/__—\/

RS p=p,) §(4-¢,) £(z-7))
F
Co‘mpovriscw\ Shows
S \
o) | vy -2 l%\m&j'ea): S(e-2 ) |

o2*

T\»e twe e w0 %emeaws Solutiong

5\‘ — e\:‘t ond Li\,,,: ékx
%C% 2) = CL(‘G:\:E £z, S(z-2,) @\‘% o< é(zﬂ—l)‘&
—
C°Y\L'm\«(',’t\,\
_f\ (f\lo\u 'c(\~l—o.e6rcu&‘ir\9<\) OL«> par' 2= 2 -8 to 2 LC

—Qé\ + ijl\ =1

oz Ii°+s o \chg



C= 1\
2k
Co Q ('_%)’1:6) e~ k2, ek»?:(
(&) oy
Ana S

D

\;kék L I lxp) RO XESM&Q

-
—TT™ - .
e !p¢‘\ ( e—-k(2> ?4)

O

2x




Problem 5. The potential energy of a charged ring

A charged ring of radius a and total charge () is at a height z, above a grounded plane.

()

Show that the interaction energy between the plane and the ring is
1
Uie(20) = Ulz) — Vst = 5 / dr / @r1 p(r) [G(r, 1) — Golrr)] plry)  (13)
ring ring
where G(r, ;) is the green function of a point charge in the presence of the grounded

plane, and G,(r,7;) is the free green function.

From the image solution for the Green function and the expansion given in Eq. (10),
show that the interaction energy of a ring with a grounded potential is

2 o)
UnGe) = g [ e L) e/ (14)

The last remaining integral can be done (with Mathematica)

Q2 a ] ) a?
——— | — EllipticK(—— 15
8ma | zm ipticK( 22) (15)

Uint (Zo) =

Starting from the integral in Eq. (14) and the expansion of the Bessel function (see
DLMF), determine the asymptotic form of the force on the ring for z, > a. You should
find that your result is in agreement with Eq. (5).

When 2y < a, use the series expansions of complete elliptic integrals available in Math-
ematica

(FullSimplify[Series[EllipticK[-y],...], Assumptions->{y>0}] worked for me),
to show that the potential energy the ring and the plane is:

2

Une(z0) = oo log(z/40) (16)

Compute the force and verify consistency with Eq. (6) and its corresponding force.

Use Mathematica or other program to plot the potential energy Ui (z,)/(Q*/4ma)
versus z,/a, together with the short and long distance asymptotics all in one plot.


http://dlmf.nist.gov/
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