
Problem 1. Defects

This problem will study defects in parallel plate capacitors. A parallel plate capacitor has
area, A, and separation, D, and is maintained at the potential difference, ∆V = EoD. There
are n defects per unit area on the lower plate and none on the upper. The defects consist of
hemispherical shells of radius a bending towards the upper plate. You should assume that
a� D, and that na2 � 1 so that the defects are very widely spaced.

(a) Determine the charge per unit area on and near the defect. Plot the surface charge
on the hemisphere as a function of θ, and on the plane as a function of r. (Hint: To
solve for the potential in the vicinity of a defect use that fact that for a� z � D the
potential reaches its unperturbed form Φ(z) = −Eoz, so that the upper boundary can
be ignored.)

(b) Show that the charged induced on the hemisphere is:

Q = Eoa
2 3π (1)

(c) Use these results to show that the capacitance is unchanged by the defect to the order
we are working, i.e.

C ' A

d
(2)

(d) In deriving this result we have used that D � a. The size of corrections to the potential
you found are of order ∼ a3/D3. Explain why.
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Problem 2. Force between two rings of charge

A single ring of charge of radius a and total charge Q is centered at the origin and lies in
the xy plane.

(a) Show that the potential far from the ring can be written as the multipole expansion

Φ =
Q

4π

∑
`

a`P`(0)

r`+1
P`(cos θ) (3)

' Q

4πr
− 1

2

Qa2

4πr3
P2(cos θ) +

3

8

Qa4

4πr5
P4(cos θ) + . . . (4)

where θ is measured relative to the z axis, and were in the second line we have used
the known values for P`(0). What are the values of the spherical multipoles q`m (up to
` = 2), and the cartesian multipoles pi and Qij.

(b) For a ring of charge of radius a, use an elementary argument to determine the potential
along the z axis. Verify that it agrees with the expansion of part (a) when part (a) is
evaluated on the z axis.

(c) Show that the force between two coaxial charged rings of charge Q and −Q widely
separated by a distance, 2Z, along the z axis is

F ' −Q2

16πZ2
+ 3

Q2a2

64πZ4
+ . . . (5)

where a negative answer indicates an attractive force.

An elegant way to find this is to use the Green Reciprocity theorem which is equivalent
to the statement that GD(r, r0) = GD(r0, r). In this context, use this condition to
show that the potential energy of a quadrupole charge distribution in the electrostatic
potential from a monopole is the same as the potential energy of a monopole in an
electrostatic potential from a quadrupole.
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Problem 3. A ring of charge close to a plane

(a) Consider a long line of charge separated from a grounded plane by separation zo. The
charge per length is λ. Determine the force per length between the grounded plane
and the charged line.

(b) By integrating the force found in part(a), show that the potential energy per length of
the line of charge and the grounded plane is

uint =
λ2

4π
log 2zo + const (6)

This potential energy for is exactly half of the potential energy between the line of
charge and its image. Qualitatively explain why this is the case.

(c) Conser a ring of radius a and total charge Q, separated from a plane by a height zo.
Use the results of this problem to determine the total force between the ring and the
plane when zo � a. Explain qualitatively why the results of this problem apply.
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Problem 4. A ring of charge close to a plane

(a) Consider a long line of charge separated from a grounded plane by separation z

o

. The
charge per length is �. Determine the force per length between the grounded plane
and the charged line.

(b) By integrating the force found in part(a), show that the potential energy per length of
the line of charge and the grounded plane is

u

int

=
�

2

4⇡
log 2z

o

+ const (5)

This potential energy for is exactly half of the potential energy between the line of
charge and its image. Qualitatively explain why this is the case.

(c) Conser a ring of radius a and total charge Q, separated from a plane by a height z
o

.
Use the results of this problem to determine the total force between the ring and the
plane when z

o

⌧ a. Explain qualitatively why the results of this problem apply.
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Problem 4. The free green function in cylindrical coordinates

(a) Show that the green function in cylindrical coordinates can be expanded as

G(r, ro) =
1

2π

∞∑
m=−∞

∫ ∞
0

kdk
[
eimφJm(kρ)

] [
e−imφoJm(kρo)

]
gkm(z, zo) (7)

and determine the appropriate equation for gkm(z, zo). (Hint: this may be a good time
to examine the course notes and to write δ3(r − ro) = 1

ρ
δ(ρ− ρo)δ(z − zo)δ(φ− φo) as

an expansion in eigen functions in the ρ, φ directions)

(b) (Optional) If you dont know what a Bessel function looks like, plot J0(x), J1(x), J2(x)
and record their series expansions at small and large x. Be aware of the following
indentity in 2 dimensions: the 2D function

eik⊥·r⊥ (8)

can be written as a fourier series at each radius r⊥. Defining r⊥ = r⊥(cosφ, sinφ), we
have

eik⊥r⊥ cosφ =
∞∑

m=−∞

eimφ imJm(kr⊥) (9)

(c) Consider a two dimensional function f(r⊥) which is independent of the azimuthal angle
φ. Its Fourier transform, f̂(k⊥) =

∫
d2x⊥e

ik⊥·r⊥ , is independent of the azimuthal of

the k⊥. Using Eq. (9), determine an integral relation between f̂(k⊥) and f(r⊥) (and
vice versa) using the Bessel function J0(k⊥r⊥). We say that f̂(k⊥) and f(r⊥) are (up
to a constant) Hankel transforms of each other (google Hankel transform).

(d) Use the methods discussed in class (Zangwill calls this the method of direct integration)
to show that the free Green function in cylindrical coordinates can be written

Go(r, ro) ≡
1

4π|r − ro|
=

1

2π

∞∑
m=−∞

∫ ∞
0

kdk
[
eimφJm(kρ)

] [
e−imφoJm(kρo)

] e−k(z>−z<)

2k

(10)
where z> and z< is the greater and lesser of z and zo.

It is useful to compare this result to the one derived in class

1

4π|r − ro|
=
∞∑
`=0

∑̀
−`

[Y`m(θ, φ)Y ∗`m(θo, φo)]
1

2`+ 1

r`<
r`+1
>

(11)

and to a similar problem that could have been asked

1

4π|r − ro|
=

1

2π

∞∑
m=−∞

∫
dk

2π

[
eim(φ−φo)eik(z−zo)

]
Im(kρ<)Km(kρ>) (12)
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Problem 5. The potential energy of a charged ring

A charged ring of radius a and total charge Q is at a height zo above a grounded plane.

(a) Show that the interaction energy between the plane and the ring is

Uint(zo) = U(zo)− Uself =
1

2

∫
ring

d3r

∫
ring

d3r1 ρ(r) [G(r, r1)−Go(r, r1)] ρ(r1) (13)

where G(r, r1) is the green function of a point charge in the presence of the grounded
plane, and Go(r, r1) is the free green function.

(b) From the image solution for the Green function and the expansion given in Eq. (10),
show that the interaction energy of a ring with a grounded potential is

Uint(zo) = − Q2

8πa

∫ ∞
0

dx [J0(x)]2 e−2x(zo/a) (14)

The last remaining integral can be done (with Mathematica)

Uint(zo) = − Q2

8πa

[
a

zπ
EllipticK(−a

2

z2
)

]
(15)

(c) Starting from the integral in Eq. (14) and the expansion of the Bessel function (see
DLMF), determine the asymptotic form of the force on the ring for zo � a. You should
find that your result is in agreement with Eq. (5).

(d) When z0 � a, use the series expansions of complete elliptic integrals available in Math-
ematica
(FullSimplify[Series[EllipticK[-y],...], Assumptions->{y>0}] worked for me),
to show that the potential energy the ring and the plane is:

Uint(zo) '
Q2

8π2a
log(zo/4a) (16)

Compute the force and verify consistency with Eq. (6) and its corresponding force.

(e) Use Mathematica or other program to plot the potential energy Uint(zo)/(Q
2/4πa)

versus zo/a, together with the short and long distance asymptotics all in one plot.
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