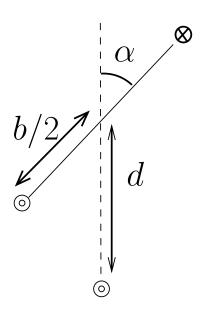
Problem 1. Energy of a wire and rectangle (Jackson)

(a) Consider an infinitely long straight wire carying a current I in the z direction. Use the known mangetic field of this wire, and the integral form of $\mathbf{B} = \nabla \times \mathbf{A}$


$$\int_{S} \mathbf{B} \cdot d\mathbf{S} = \oint d\mathbf{\ell} \cdot \mathbf{A} \tag{1}$$

to show that the vector potential for an infinite current carrying wire in the Coulomb gauge is

$$A^{z} = \frac{-(I/c)}{2\pi} \log \rho + \text{const}$$
 (2)

Check that the Coulomb gauge condition is satisfied.

(b) Now consider a flat right rectangular loop carrying a constant current I_1 that is placed near a long straight wire carrying a constant current I_2 . The rectangular loop is oriented so that its center is a perpendicular distance d from the wire; the sides of length a are parrel to the wire and the sides of length b make an angle a with the plane containing the wire and the loops center (the dashed line below). In the schematic diagram below, the current I_2 in the long wire flows out of page. The orientation of I_1 is also indicated, i.e. the current lower edge of the rectangle (of length a) also comes out of the page.

Show that the interaction energy

$$W_{12} = \frac{I_1}{c} F_1 \tag{3}$$

(where F_1 is the magnetic flux from I_2 through the rectangular circuit carrying I_1), is

$$W_{12} = \frac{aI_1I_2}{4\pi c^2} \ln \left[\frac{4d^2 + b^2 + 4db\cos\alpha}{4d^2 + b^2 - 4db\cos\alpha} \right]$$
 (4)

(c) (Optional) Using energy considerations calculate the force between the loop and the wire for constant currents. (This requires some somewhat lengthy differentiation and is best done with mathematica). You should find

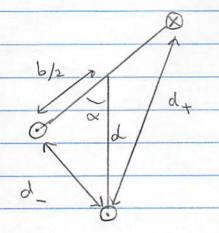
$$F^{x} = \frac{I_{1}I_{2}a}{4\pi c^{2}} \left(\frac{8b(b^{2} - (2d)^{2})\cos\alpha}{b^{4} + (2d)^{4} - 2b^{2}(2d)^{2}\cos(2\alpha)} \right), \tag{5}$$

$$F^{y} = \frac{I_{1}I_{2}a}{4\pi c^{2}} \frac{1}{d} \left(\frac{4b(2d)(b^{2} + (2d)^{2})\sin\alpha}{b^{4} + (2d)^{4} - 2b^{2}(2d)^{2}\cos(2\alpha)} \right), \tag{6}$$

where in the figure above the x and y axes are respectively perpendicular and parallel to the separation d. For large $d \gg a, b$ the force expands to

$$F^{y} = -\frac{I_1 I_2 a b \cos \alpha}{2\pi c^2 d^2} \tag{7a}$$

$$F^x = +\frac{I_1 I_2 a b \sin \alpha}{2\pi c^2 d^2} \tag{7b}$$


- (d) (Optional) Check that for large distances $d \gg a, b$ the force computed in the previous sub-question agrees with the appropriate formula for a dipole in an external field.
- (e) Show that when $d \gg a, b$ the interaction energy reduces to $W_{12} = \boldsymbol{m} \cdot \boldsymbol{B}$, where \boldsymbol{m} is the magnetic moment of the loop. Explain the sign which is opposite from our previous result $U = -\boldsymbol{m} \cdot \boldsymbol{B}$. What is the difference between these two expressions for the energy of dipole in a magnetic field?

Energy of a wire

Thus eve compare and conclude

$$A^{\frac{7}{2}} = -I/c \log P + const$$

b) Use the results of part(a).

Note from geometry:

$$d_{+}$$
 $d_{+}^{2} = d^{2} + (b/2)^{2} \pm 2d(\frac{b}{2})\cos d$

page 2

Then

$$W_{12} = \overline{I}, \quad \begin{cases} d\vec{\ell}, \cdot \vec{A} \end{cases}$$

Using part (a)
$$A_z = -(I_z/c) \log \rho$$

we find

$$W_{12} = -\underline{I}_{1}\underline{I}_{2}a \left[\log d_{-} - \log d_{+}\right]$$
 (see figure)

where d+ are given by geometry

Thus we find

$$W_{12} = I_1 I_{2\alpha} \log \left(\frac{d^2 + (b/2)^2 + 2d(b/2)\cos \alpha}{d^2 + (b/2)^2 - 2d(b/2)\cos \alpha} \right)$$

Which is the answer quoted.

c) The force has two components

$$F^{y} = + \partial W_{12}$$

$$\partial d$$

Straight forward algebra gives (Mathematica)

$$F^{4} = \frac{86 (b^{2} - (2d)^{2}) \cos x}{b^{4} + (2d)^{4} - 2b^{2}(2d)^{2} \cos 2x} \qquad I_{1}I_{2}a$$

We can also compute the force in the x-direction. Under a small displacement in the x-direction we see that

$$\Delta x = \rho \Delta \theta = -\rho \Delta x$$

$$= \rho \Delta \theta = -\rho \Delta x$$

$$F^{\times} = \frac{1}{d} \left(\frac{4b(2d)(b^2 + (2d)^2) \sin \alpha}{b^4 + (2d)^4 - 2b^2(2d)^2 \cos(2\alpha)} \right) \frac{I_1 I_2 \alpha}{4\pi c^2}$$

d) Taking a taylor series
$$d \rightarrow \infty$$

$$F^{3} \simeq -\left(\frac{2b\cos x}{d^{2}}\right) \frac{1}{4\pi c^{2}}$$

$$\frac{F^{y} \simeq -\underline{I}_{1}\underline{I}_{2}ab}{2\pi c^{2}} \frac{\cos \alpha}{d^{2}} = \frac{Eq. 1}{2}$$

$$F^{\times} \simeq + \left(\frac{2b\sin\alpha}{d^2}\right) \frac{I_1 I_2 \alpha}{4\pi c^2} Eq. 2$$

To compare with the dipole form we use: $\vec{F} = (\vec{m} \cdot \nabla) \vec{B} \quad \text{or}$

On axis
$$x = 0$$
 we have
$$B^{x} = -(I/c)$$

$$2TT y$$

$$\vec{B} = B \hat{\phi} = +I/c \left(-\sin\theta \hat{\chi} + \cos\theta \hat{y}\right)$$

```
Page 5
 So for small x (or 0 = T/2 or 8 small)
       \hat{B} = B^{\times} \hat{x} + B^{\circ} \hat{y} = (I/c) - \hat{x} + \frac{x}{y} \hat{y}
 we used (see picture) that
        \cos \theta = \sin \theta \simeq x \sin \theta \simeq \cos \theta \simeq 1
 Then we are ready to compute:
     Fy = mx dx By + my dy By
     F = my dy Bx
                 this does not
             Vanish as x→0
Then
      F' = m \sin \alpha \frac{\partial}{\partial y} \left( \frac{-I/c}{2\pi y} \right)
     FX =+ m sind I/c
          21142
       This agrees with Eq. 2 on the previous
    page with m = I, ab
```

page 6

Similarly with mx = -m cos x

 $F^{y} = -m\cos\alpha \partial_{x} \left(\frac{I_{z}/c}{2\pi y} \right)$

 $F^{y} = - m \cos \alpha (I_{2}/c)$ $2 \pi y^{2}$

This agrees with Eq. I on the two pages back

The sign is positive because this is

the energy stored in the fields. The

usual formula is the energy required $U = -\vec{m} \cdot \vec{B} \qquad \text{to bring a dipole}$ with fixed currents

from infinity to a specified location. Usip

ignores the work that must be done by

the battery to maintain those currents in

the face of the changing flux. Wy contains

this work by the battery, u does not.

· See Jackson

Problem 2. Dipole two ways

Consider two charges $\pm q$ moving a short distance on ℓ the z axis forming a dipole, i.e.

$$z_{+}(t) = \ell/2\cos(\omega t) \tag{8}$$

$$z_{-}(t) = -\ell/2\cos(\omega t) \tag{9}$$

This charged has dipole moment $p = q\ell \cos(\omega t)$ directed in the z direction

- (a) Write down the electric field as a function of time.
- (b) By treating the time dependent electric field as a "displacement current"

$$\frac{\mathbf{j}_D}{c} = \frac{1}{c} \partial_t \mathbf{E},\tag{10}$$

determine the magnetic field using Ampere's Law

$$\oint \mathbf{B} \cdot d\mathbf{\ell} = \int_{S} d\mathbf{a} \cdot \frac{\mathbf{j}_{D}}{c} \tag{11}$$

with an appropriate Amperian loop. Assume that $\mathbf{B} = B(r, \theta) \hat{\phi}$ which can be justified from the symmetry of the problem. You should find

$$\boldsymbol{B} = \frac{\dot{\boldsymbol{p}} \times \boldsymbol{n}}{4\pi r^2 c} \tag{12}$$

(c) Consider the Biot Savat Law

$$\boldsymbol{B}(\boldsymbol{r}) = \int d^3 \boldsymbol{r}_0 \frac{\boldsymbol{j}(\boldsymbol{r}_0)}{c} \times \frac{(\boldsymbol{r} - \boldsymbol{r}_0)}{4\pi |\boldsymbol{r} - \boldsymbol{r}_0|^3}$$
(13)

Show that if j is curl free $\nabla \times j = 0$ the magnetic field is zero. Explain why the displacement current from an electrostatic field does not need to be included in the Biot-Savat Law.

Thus we see that the *electrostatic* displacement current is necessary for consistency of Ampere's Law but does not actually produce a magnetic field.

(d) Show (using a high school physics argument) that the current density integrated over small volume ΔV surrounding the charges is

$$\boldsymbol{j}\Delta V = \partial_t \boldsymbol{p} \tag{14}$$

Use the Biot-Savat Law to determine the magnetic field. It should agree with (b).

(e) At what radius do the electric fields part (a) and the magnetic fields of part (b), (d) become equal in magnitude. At this radius the approximation scheme is no longer valid.

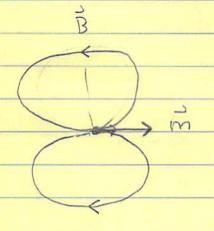
Problem 3. A rotating magnet

A magnetic dipole moment of magnitude m lying in the xy plane rotates about its center with angular velocity ω . It points in the x direction at time t=0

- (a) Find the electric and magnetic fields on the z axis as a function of time. Work to the lowest non-trivial order in inverse powers of c. (Hint: the easy way is to use the vector potential to determine E)
- (b) Estimate the magnitude of E/B at a given radius r. At what radius is the solution you found in part (a) valid? At what radius does it break down and why?

writing

The solution starts here


b) Then

but
$$m$$
 points in the xy plane, while n is in the \hat{z} , so direction

$$\vec{B} \leftarrow \vec{m} = -\vec{m}(t) - \vec{m}(t) = \vec{B}(t)$$

$$\vec{A} = -\vec{m}(t) - \vec{m}(t) = \vec{B}(t)$$

Here
$$\vec{m}(t) = (\cos \omega t)\hat{x} + (\sin \omega t)\hat{y}$$
. Intuitively this magnetic field is just a dipole on its side

Now for the electric field m(t) x2 = m [coswt x + sinwty] x2 = - m coswt q + m sin wt x = m w [sinut ŷ + coswt x] E = -1 2 4 So So for Z~ 1 , E is comparable to B and quasistatics breaks down.

Problem 4. Electric and Magnetic fields of AC Solenoid

A cylindrical solenoid of high conductivity and radius a carries surface current $\mathbf{K} = K_o \cos(\omega t) \hat{\boldsymbol{\phi}}$

- (a) Determine the electric and magnetic fields to the first non-vanishing order in the quasistatic approximation.
- (b) Show that the magnetic field to the next-to-leading order in the quasi-static approximation outside the cylinder is

$$\Delta B = \delta B_z(\rho) - \delta B_z(\rho_{\text{max}}) = \frac{K_o}{c} \cos(\omega t) \, \frac{1}{2} (\omega a/c)^2 \left(-\log \frac{\rho}{a} + C \right) \tag{15}$$

where $C = \log \rho_{\text{max}}/a$. Here we are quoting ΔB the difference between δB at ρ and δB at ρ_{max} .

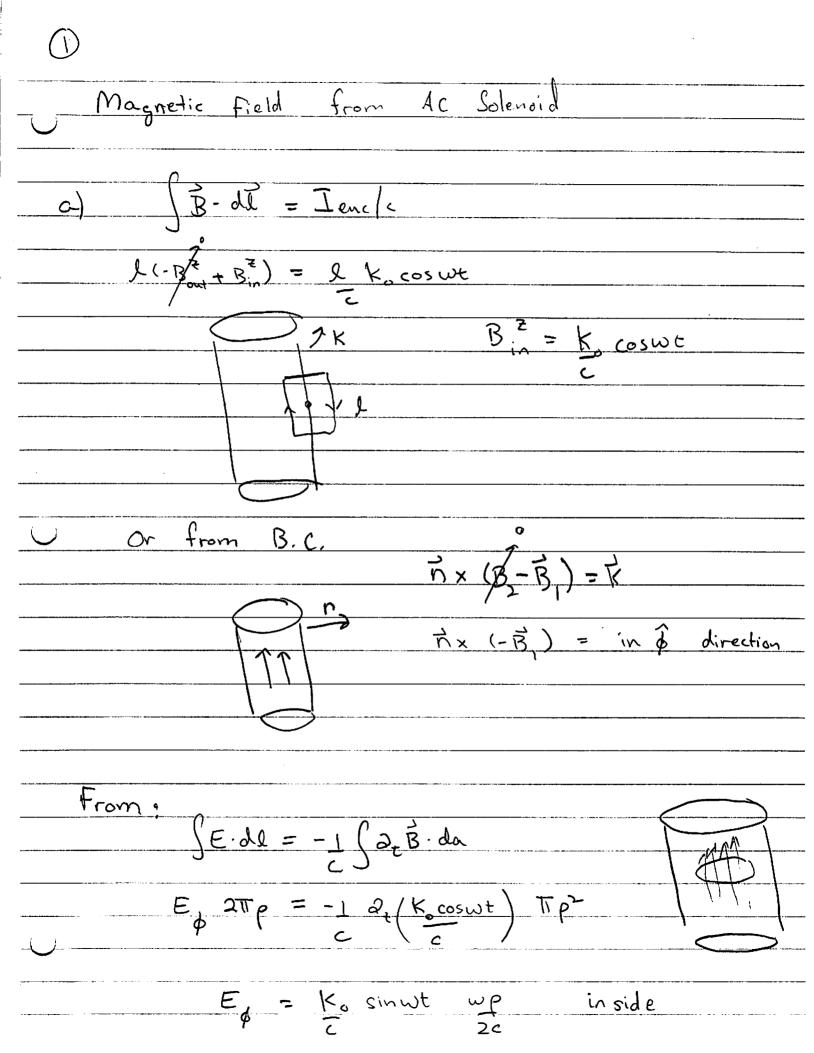
(c) The cutoff ρ_{max} arises because the quasi static approximation breaks down for large ρ where the physics of radiation becomes important. ρ_{max} should be of order $\rho_{\text{max}} \sim c/\omega$. Explain qualitatively why the approximation breaks down for this radius.

Remark: Certainly $|\delta B_z(\rho_{\text{max}})|$ is logarithmically smaller than $|\delta B_z(\rho)|$ for $\rho \sim a$. In a logarithmic approximation we can neglect $\delta B_z(\rho_{\text{max}})$ and set $\rho_{\text{max}} = c/\omega$ leading to

$$\delta B_z(\rho) \simeq \frac{K_o}{c} \cos(\omega t) \, \frac{1}{2} (\omega a/c)^2 \left(-\log \frac{\rho}{a} + \log(c/(\omega a)) \right) \tag{16}$$

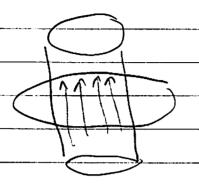
Leading log accuracy may not be familiar to you. It just says that we are neglecting the constant inside the logarithm which is of order 1. Thus in this approximation,

$$\log(100/2) = \log(100) - \log(2) \simeq \log(100) \tag{17}$$


$$3.9 \simeq 4.6$$
 (18)

which is often good enough for government work. Bethe famously used such approximations to estimate the first QED corrections to the hydrodgen spectrum.

(d) Determine the magnetic field (to the next-to-leading order in the quasi-static approximation) inside the cylinder to logarithmic accuracy, and qualitatively sketch the complete magnetic field $B(\rho)/B_o$ where B_o is the leading order answer in the center of the cylinder.


Remark: Note that the ρ depende of part (b) and part (c) does not depend on the value of $C = \log(\rho_{\text{max}}/a)$.

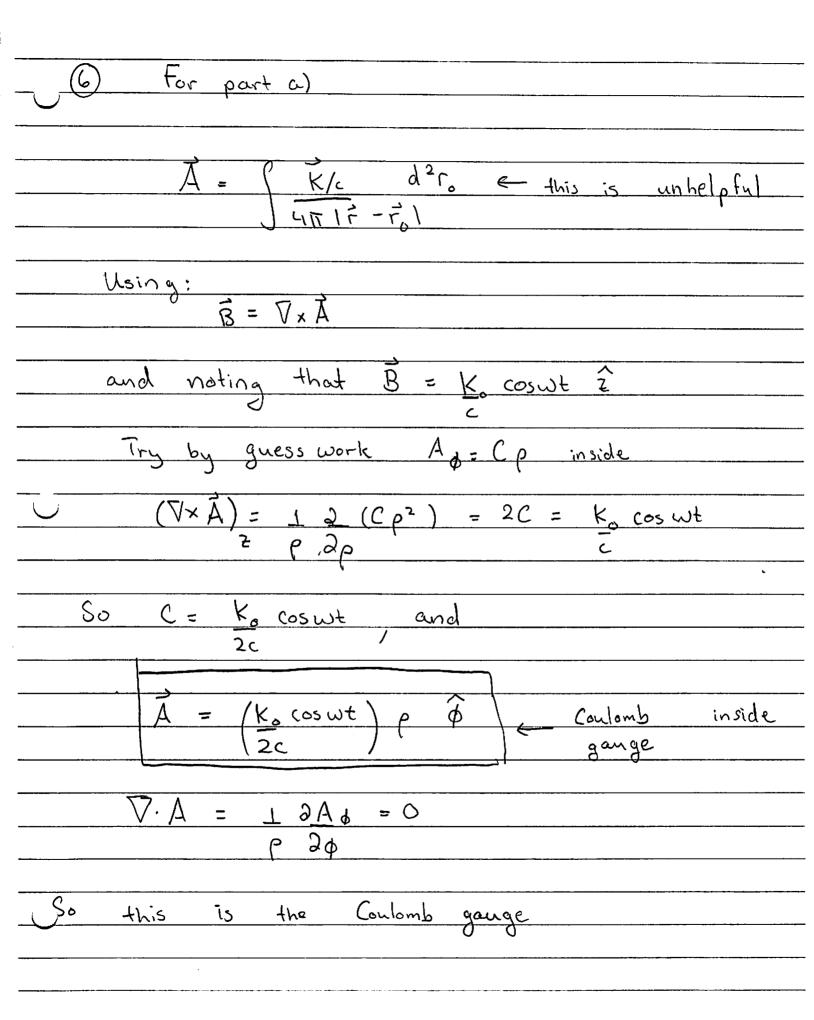
(e) Determine the vector and scalar potentials in the Coulomb and Lorentz gauges to the required order and accuracy to reproduce the electric and magnetic fields in part (a) and verify that you obtain the correct fields.

(
	_

And outside

$$E_0 = \frac{K_0 \sin \omega t}{C} \frac{\omega R^2}{2c\rho}$$

Swmman


$$B = \begin{cases} K_0/c \cos \omega t & inside \\ O & out side \end{cases}$$

$$E_{p} = \begin{pmatrix} K_{o}/c & sin\omega + (\omega p) & inside \\ K_{o} & sin\omega + (\omega R^{2}) & outside \\ \hline C & (2pc) \end{pmatrix}$$

/	3
(3`
/	

To determine the B-field to third order have (outside the cylinder) $\nabla \times B^{(3)} = 1 \partial_{\xi} E^{(2)}$ $\frac{-\partial B^{\frac{2}{3}}}{\partial \rho} = \frac{1}{2} \frac{k}{2} \cos \omega t \left(\frac{\omega^{2} R^{2}}{2 c_{\rho}} \right)$ Integrating From p up to pmax $SB^{2}(\rho, \gamma) - SB^{2}(\rho) = \frac{1}{c} \cos \omega t \left(\frac{\omega^{2}R^{2}}{2c^{2}}\right) \left(\frac{1}{c} - d\rho\right)$ $= \frac{K_o \cos \omega t}{c} \left(\frac{\omega^2 R^2}{2c^2} \right) \left(\ln \rho - \ln \rho_{max} \right)$ To highligth the dependence on p we write this (multiplying by -1) $SB^{2}(p) - SB^{2}(p_{max}) = K_{o}(os \omega t) \left(\frac{\omega^{2}R^{2}}{2c^{2}}\right) \left(-\ln \frac{\rho}{R} + \ln \frac{\rho}{R}\right)$

when light traverses the whole system on a time-scale which is much Shorter
when light traverses the whole system
on a time-scale which is much Shorter
than 1
ω
When p becomes large p~ C, then
the light takes a long thme to reach pmax-
d) Inside the cylinder we have
\circ
$\frac{SB_{2}(R) - SB_{2}(\rho)}{SB_{2}(\rho)} = \int_{R}^{R} \frac{\partial B^{2}}{\partial \rho'} d\rho'$ Ampere's law
Ampere's law
= (-1 2, E(2)(p) dp'
) c ' '
\
$= \int_{-\frac{\pi}{2}}^{\kappa} - \frac{\kappa}{2c} \cos \omega t \frac{\omega^2 \rho'}{2c} d\rho'$
$\int \overline{\zeta^2} 2\dot{\zeta}$
$SB_{2}(R) - SB_{2}(b) = -K^{2} \cos \omega t \left(\frac{\lambda_{2} K_{2} - \alpha_{3} b_{3}}{\lambda_{1} c_{3}} \right)$
2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Multiply by a minus and Adding B2(R) to both sides
(see part (b) for Bz(R))

(3)
In the coulomb gauge
$-\nabla^2 \varphi = \beta$
So \(\P = 0 \) to all orders
Conlomb gange
Cano. A gange
The Lorentz gauge we require
- J
C = A.A + V.A = O
USo taking 4=0 and A=(Ko coswt)pp
\ 2< \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
also satisfies the lorentz gange condition
So The B and E-fields
B = VX A = K, cosut 2 (agrees @ before)
And the E-field is
6 3
$= \frac{\vec{E} = -1 \partial_t \vec{A} - \vec{\nabla} \cdot \vec{\varphi}}{\vec{A} + \vec{A} \cdot \vec{A} \cdot \vec{A}}$
E = +16 sin wt wp (agrees @ before)
2 c

Outside we try motivated by $(\nabla \times A)_2 = 1 = (A_0 P)$
γ ορ
$A = \frac{k \cdot (cs\omega t \ R^2)}{2c} \leftarrow \frac{coulomb}{coulomb} gauge potential$
20 0000
- CM 3 lare
Which is Continuous with the inside solution
$B^{5} = (\Delta \times B^{5}) = \overline{(9(A^{4}b))} = 0$
T
The electric field is
$= \frac{E = -1 \partial_t A}{E} = \frac{1}{K} \sin \omega t + \frac{\omega R^2}{M}$
$\frac{\vec{E} = -1 \partial_t \vec{A} = K \sin \omega t \omega R^2}{2c\rho}$
As before
$\vec{A} = \vec{A}$
$\vec{A} = \vec{A}$ LG Conlomb gange
(0
$\frac{\varphi = \varphi = 0}{LC = CG}$

Problem 5. Dipole down the tube (Zangwill)

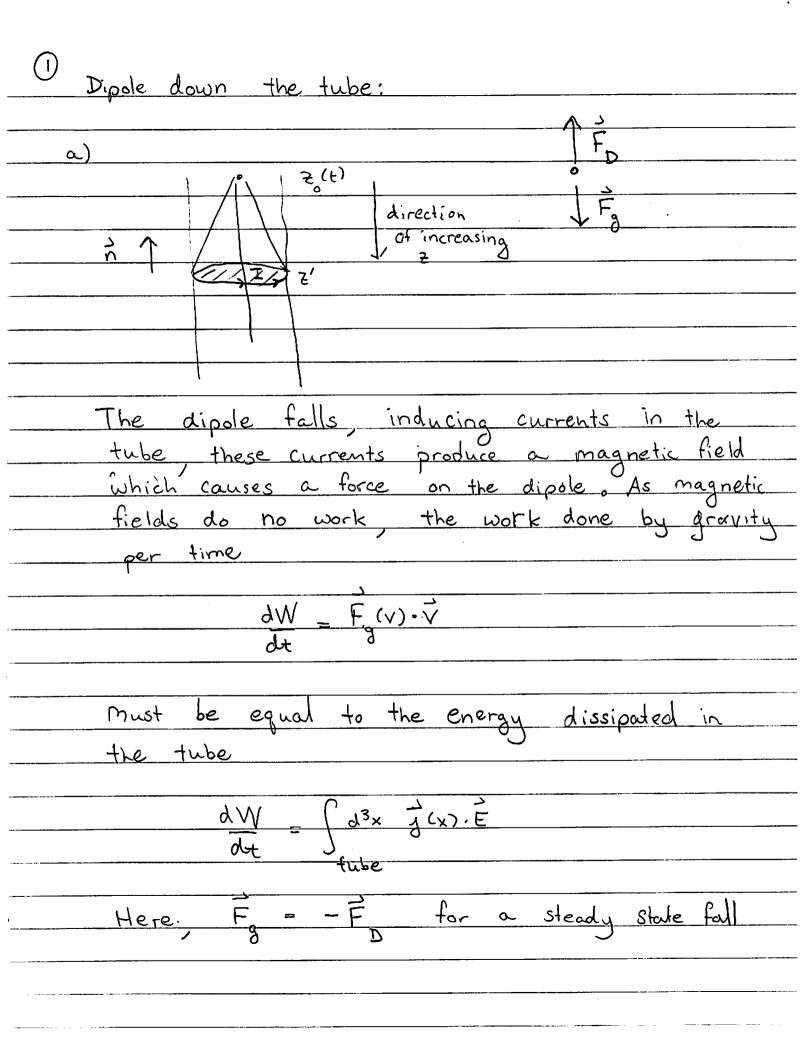
A small magnet (weight w) falls under gravity down the center of an infinitely long, vertical, conducting tube of radius a, wall thickness $D \ll a$, and conductivity σ . Let the tube be concentric with the z-axis and model the magnet as a pointlike dipole with moment $\mathbf{m} = m\hat{\mathbf{z}}$. We can find the terminal velocity of the magnet by balancing its weight agains the magnetic drag force associated with the ohmic loss in the walls of the tube.

(a) At the moment it passes through $z = z_o(t)$, show that the magnetic flux produced by m through the a ring of radius a at height z' is

$$\Phi_B = \frac{m}{2} \frac{a^2}{r_o^3} \quad \text{where} \quad r_o^2 = a^2 + (z_o - z')^2$$
(19)

(b) When the speed v of the dipole is small, argue that the Faraday EMF induced in the ring is

$$\mathcal{E} = -\frac{1}{c}\partial_t \Phi_B = \frac{v}{c} \frac{\partial \Phi_B}{\partial z'} \tag{20}$$


(c) Show that the current induced in the thin slice of tube which includes the ring is

$$dI = \frac{3mav\sigma D}{4\pi c} \frac{(z_o - z')}{r_o^5} dz'$$
 (21)

(d) Compute the magnetic drag force \mathbf{F} on \mathbf{m} by equating the rate at which the force does work to the power dissipated in the walls of the tube by Joule heating. I find

$$\frac{dE_{\text{ohm}}}{dt} = \sigma D(v/c)^2 \frac{m^2}{a^4} \left(\frac{45}{1024}\right)$$
 (22)

(e) Find the terminal velocity of the magnet.

a) To work out the flux we	
Compute: mag fie	td due to dipole
$\overline{\Phi}_{R}(z,z') = \overline{R}_{dio} \cdot d\overline{a}_{z} =$	magnetic flux
$\overline{\mathfrak{D}}_{B}(\mathbf{z}_{a},\mathbf{z}') = \int \vec{B}_{d;p} \cdot d\vec{a}_{\mathbf{z}} =$	through shaded regi
	in figure on previou
	page
$= \vec{A} \cdot \vec{A} $	see loop on previous page
J dip	previous page
	, vo page
Using $A = m \times r = mr$ dip $4\pi r^3$	Sin O P
we have then	
1-0	
9 = (adp msine	7,0
BJ	7
. , , ,	
= masine ma2	
2 r ² 2r ³	•
$\frac{1}{2} = \frac{ma^2}{2(a^2 + (2_0(\epsilon))^{-1})}$	
2 (a² + (2 ₀ (+) -	z') ') ' ' z

b) Then using Maxwell
$-\nabla_{x}E = 1 \partial_{t}\vec{B}$
C
- g = -dl = 1 2, 0 c
and Symmetry so that gE.dl = E 2Ta
and symmetry so that grant - cf 2110
$-\frac{E_{b}}{2\pi\alpha} = \frac{1}{C} \partial_{t} \Phi_{B}$
$-\frac{E}{c}\frac{2\pi\omega = 1}{c}\frac{\partial\overline{z}}{\partial\overline{z}}\frac{\partial\overline{z}}{\partial\overline{z}} = -\frac{V}{c}\frac{\partial\overline{z}}{\partial\overline{z}'}$
≥ - 9₹
∂₹/
So $E = E_{\phi} 2 \pi \alpha$ is:
E = + V 20
$\mathcal{E} = + \sqrt{3} \overline{\Delta}$
1
The overall sign depends on the
conventions for the loop. This
is a consistent set of Conventions

(1	7)
•	_

Then

$$\frac{dT_{\phi} = 3\sigma(v/c) \, mon \, D}{\sqrt{117} \, (\alpha^2 + (z_0 - z')^2)^{5/2}} \, dz'$$

d)

We can find the energy dissipated in the system.

dt Joss OF F d3x

 $\frac{dW}{dt} = \sigma D 2\pi \alpha \int dz' E_{\beta}^{2}$

Using Ex from part c, find

 $\frac{dW - \sigma D 2 \pi \alpha \left(\frac{V 3 m \alpha}{C 4 \pi}\right)^2 \left(\frac{dz'}{(a^2 + (z-z')^2)^5}\right)}{dt}$

Shifting variables $u = (z' - z_0)/a$, we have

 $\frac{dW}{dt} = \sigma D 2TT \alpha \left(\frac{V 3ma}{C 4TT} \right)^{2} \frac{1}{\alpha^{2}} \int \frac{u^{2}}{(1 + u^{2})^{5}} du$

I = 511

6				
The	integral c elementary	an be l	condled by Collecting	contour integration
	dW ₁₀₀₅ = 0	$\frac{\sqrt{\sqrt{c}}}{\sqrt{c}} \frac{\sqrt{c}}{a^4}$	(45)	Casies-1
This to	work mu	ist be	equal to	FDV leading
	F =	<u>σD v</u>	m² (45)	
e)	So setting	F _D = ω	<u>e</u> eight	
	V =	W o D m ²	(1024)	
		C2 Q4		
				·

Problem 6. Eddy-Current Levitation (Zangwill)

A wire loop of radius b in the x-y plane carries a time-harmonic current $I_o \cos \omega t$. Find the value of I_o needed to levitate a small sphere of mass m, radius a, and conductivity σ at a height z above the center of the loop. Assume $a \ll b$ and that $\delta \ll a$ where δ is the skin depth of the sphere.

(a) First recall in class that we showed that an oscillating magnetic field is damped out over a distance δ . So the picture is that a surface current is generated to satisfy the boundary conditions:

$$\boldsymbol{n} \times (\boldsymbol{H}_{\text{out}} - \boldsymbol{H}_{\text{in}}) = \boldsymbol{K} \tag{23}$$

or

$$\boldsymbol{n} \times (\boldsymbol{H}_{\text{out}}) = \boldsymbol{K} \tag{24}$$

since $\mathbf{H}_{\text{in}} = 0$. In reality the "surface" current has a thin thickness of order δ , and integrating the current \mathbf{j} over the thickness of order δ gives \mathbf{K} (as you did in the inclass excercise).

The boundary conditions satisfied by the magnetic field at the surface of the sphere are therefore

$$\boldsymbol{n} \cdot \boldsymbol{B}_{\text{out}} = 0 \tag{25}$$

and

$$\boldsymbol{n} \times \boldsymbol{B}_{\text{out}} = \boldsymbol{K} \tag{26}$$

Solve for the magnetic fields in the vacinity of the sphere (which are affected by the surface currents) with the boundary conditions given above, and the requirement that the field should asymptote to the field of the ring far from the sphere in units of the sphere radius, a. We are, however, still talking about distances very close to the sphere in units the ring radius b, i.e. for

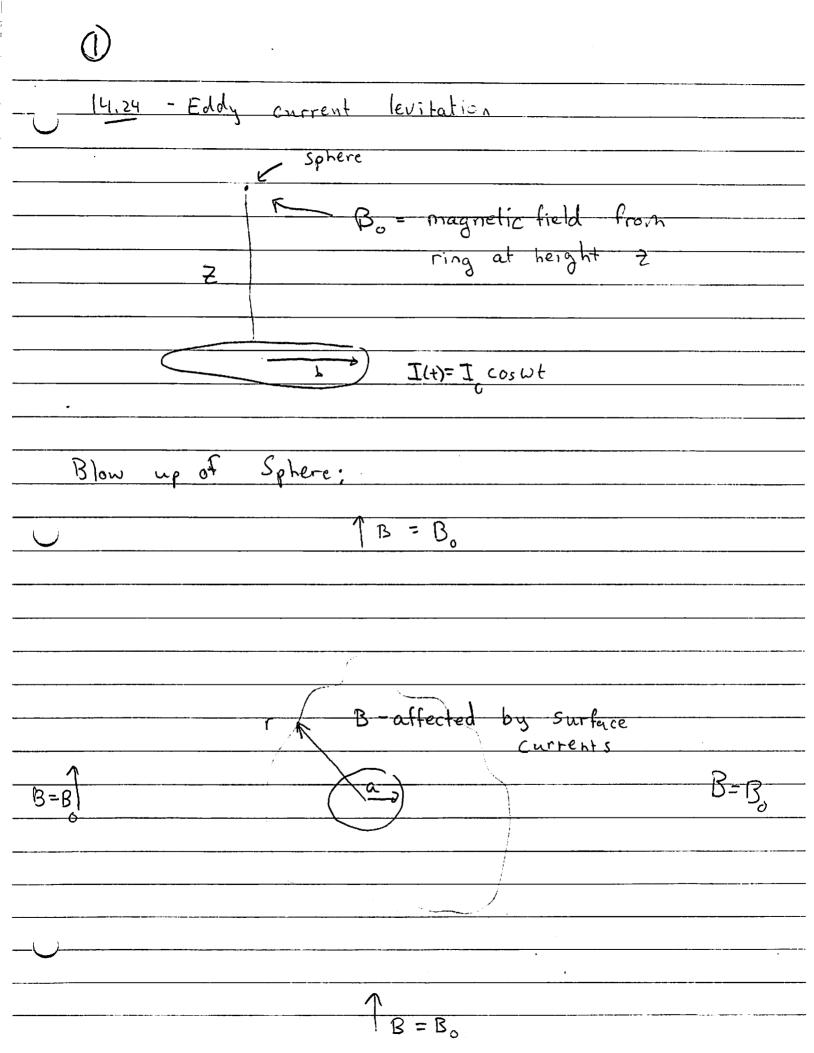
$$a \ll r \ll b \tag{27}$$

the magnetic field approaches the magnetic field of the ring without the sphere at height z.

As an intermediate step show that the vector potential outside the sphere is

$$A_{\phi}(r,\theta) = \frac{1}{2}B_{o}r\sin\theta - \frac{B_{o}a^{3}}{2r^{2}}\sin(\theta)$$
 (28)

using the separation of variables technique. Sketch the lines of magnetic field.


(b) This solution to the fields in the vacinity of the sphere will determine the surface current K and hence the induced magnetic moment on the sphere. Show that

$$\boldsymbol{m} = -\hat{\boldsymbol{z}} (2\pi a^3) B_o(z) \tag{29}$$

where $B_o(z)$ is the field from the ring at height z. Note that the magnetic moment opposes the applied field.

(c) Then you can compute the force by using the dipole moment and familiar formulas for forces on dipoles in external fields. I find that the time averaged force is

$$\overline{F_z} = \frac{3\pi}{4} \left(\frac{I_o}{c}\right)^2 \frac{a^3 b^4 z}{(z^2 + b^2)^4} = mg$$
 (30)

	Far from the sphere but much less
\bigcup	than 2 or b
	0 « r « Z
	We have the mag-field from the ring:
	The find the first
	$B_0 = I(t) \pi b^2 \cdot 2 = I b^2$
	$B_0 = I(t) \pi b^2 \cdot 2 = I b^2$ $= \frac{1}{2} (2^2 + b^2)^{3/2} 4\pi = 2c (2^2 + b^2)^{3/2}$
	(x-+ b,), 5 All 5 (E 4.8)
	So we now need to solve for
	B in vicinity of Spher
<i>l</i> :	
	Surface
· · · · · · · · · · · · · · · · · · ·	
•	
	$\beta = 0$ β , $\beta = \beta$
	The boundary conditions are
	7
	V·B=0=) n·(B,-B)=0
	2
	$\nabla \times \vec{B} = \vec{J} \qquad n \times (\vec{B}_2 - \vec{B}_1) = \vec{K}/c$
<u> </u>	
	And we require B - Bo
	2 , , , , , , ,

(3)			
<u> </u>	since n.B_=0	The picture	î S
	B=0	B ₂	→ B, ê
Now	we will solve	for B	

4
By r -> 00 we mean much greater than
a but much less than 2
a << k << z
So the easiest way is to introduce the magnetic scalar potential
the magnetic Scalar potential
V.B=0
V×B=0 outside Sphere
So $B = -\nabla 2$ and $-\nabla^2 2$ = 0
Solving for 24m
$2V = \sum (A \Gamma^{l} + C_{0}) P_{0}(\cos \theta)$
$\frac{24m}{l} = \sum_{k} (Ar^{l} + Ce^{k}) P_{k}(\cos \theta)$
Demanding
V
B = - 74 Bo Shows A, = -Bo
all other A's are zero
acti other As are 2010
24m = -Borcos\(\Theta\) + \(\text{ZCe}\) \(\text{Pe}\) (cos\(\theta\))
2 reti

(3)

Now from the B.C.
$$B_r = 0$$

$$B_r = -\frac{\partial V_m}{\partial r} = B_0 \cos\theta + \frac{1}{2}(l+1) \frac{C_0}{r^2+1} \frac{P_1(\cos\theta)}{r^2+1} = 0$$

This is possible if $C_0 = 0$ for $l+1$ and
$$B_0 + \frac{2}{2}C_1 = 0 \implies C_1 = -\frac{1}{2} \frac{B_0}{a^3}$$

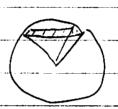
So

$$V_m(\vec{r}) = -\frac{1}{2} \frac{B_0}{a^3} \cos\theta$$

$$\vec{r} \times (\hat{r} B_r + \hat{\theta} B_0) = \vec{J}/c$$

Then we need:
$$\vec{r} \times (\hat{r} B_r + \hat{\theta} B_0) = \vec{J}/c$$

$$B_0 = \frac{1}{2} \frac{B_0}{a^3} = -\frac{1}{2} \frac{B_0}{a^3} \sin\theta$$
in azimuthal direction $B_0 = \frac{1}{2} \frac{B_0}{a^3} \sin\theta$


$$\vec{r} = \frac{1}{2} \frac{\partial V_m}{\partial \theta} = -\frac{1}{2} \frac{B_0}{a^3} \sin\theta$$

 $\begin{array}{c|c} B_{\Theta} & = -\frac{3}{2}B_{\circ} \sin{\Theta} \\ \end{array}$

$$\vec{K} = -\frac{3}{2} B_0 \sin \theta \phi$$

Now eve can evaluate the magnetic moment

$$\vec{W} = \vec{S} \int d\vec{L} A(0)$$

$$dI = a d\theta \left(\frac{-3 B_0 \sin \theta}{2}\right)$$

$$M = \frac{2}{2} \int a d\theta \left(-\frac{3}{2} B_{sin}\theta\right)^{1/2} \sin\theta$$

$$= -\frac{2}{2} 3\pi a^3 B_0 \int_0^{\pi} d\theta \sin^3\theta$$

=
$$-\frac{2}{2} 3\pi a^3 B_0 \int_{-1}^{1} d\theta (1-\cos^2\theta) d(\cos\theta)$$

$$\vec{m} = -\hat{z} \times 2\pi a^3 B_0$$

$$2 - \frac{2}{3} = \frac{4}{3}$$

$$2P_{m} = -B_{o}r\cos\theta + \frac{\overline{M} \cdot \widehat{r}}{-i\pi r^{2}}$$

$$M \cdot \Gamma = -2Ta^3 B_0 \cos\theta$$

So then

$$F_z = (\vec{m} \cdot \vec{\nabla}) B_z = -M \partial_z B_z$$

With

$$B_0 = \frac{I(t)}{2^2 + b^2} \frac{b^2}{3/2}$$

$$\left[F_{2} = -\pi a^{3} \partial_{2} B_{0}^{2}\right]$$

$$= \pi a^{3} \left(-\frac{Ib^{2}}{2c} \right)^{2} - \partial_{z} \frac{1}{(z^{2} + b^{2})^{3}}$$

$$\frac{F}{z} = (\pi a^3) \left(\frac{I}{c}\right)^2 \frac{\frac{3}{2}b^4z}{(z^2+b^2)^4} = mg$$