
Problem 1. A conducting slab

A plane polarized electromagnetic wave E = EIe
ikz−ωt is incident normally on a flat uniform

sheet of an excellent conductor (σ � ω) having thickness D. Assume that in space and in
the conducting sheet µ = ε = 1, discuss the reflection an transmission of the incident wave.

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order
in (ω/σ)1/2, are:

ER
EI

=
−(1− e−2λ)

(1− e−2λ) + γ(1 + e−2λ)
(1)

ET
EI

=
2γe−λ

(1− e−2λ) + γ(1 + e−2λ)
(2)

where

γ =

√
2ω

σ
(1− i) =

ωδ

c
(1− i) (3)

λ =(1− i)D/δ (4)

and δ =
√

2/ωµσ is the skin depth.

(b) Verify that for zero thickness and infinite skin depth you obtain the proper limiting
results.

(c) Optional: Show that, except for sheets of very small thickness, the transmission
coefficient is

T =
8(Reγ)2e−2D/δ

1− 2e−2D/δ cos(2D/δ) + e−4D/δ
(5)

Sketch log T as a function of D/δ, assuming Reγ = 10−2. Define “very small thickness”.
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Problem 2. In class problems

(a) Consider an incoming plane wave of light propagating in vacuum

EI = E0e
ikz−iωtε . (6)

The light is normally incident (i.e. with angle of incidence θI = 0) upon a semi-infinite
slab of dielectric with µ = 1 and dielectric constant ε, which fills the half of space with
z > 0. Use the reflection and transmission coefficients discussed in class to show that
the (time-averaged) force per area on the front face of the dielectric is away from the
dielectric (i.e. in the −ẑ direction) and is equal in magnitude to

|F z|
A

=
1

2
E2

0

(
n− 1

n+ 1

)
(7)

(b) Consider an incoming plane wave of light propagating in vacuum

EI = E0e
ikz−iωtε . (8)

The light is normally incident upon a slab of metal with conductivity in σ and µ =
ε = 1. In class, we evaluated the (time-averaged) Poynting vector just inside the metal
and computed the (time-averaged) energy flux into the metal per area per time:

〈S · n〉 = c

√
2ω

σ
|E0|2 (9)

Show that this energy flux is equal to (time-averaged) Joule heating in the metal.
(Hint: for ohmic material the energy dissipated as heat per volume per time is E · J
– I understand this result as qE · v/∆V = (force×velcoity)/(Volume).)
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Problem 3. Snell’s law in a crystal

Consider light of frequency ω in vacuum incident upon a uniform dielectric material filling
the space y > 0. The light is polarized in plane (as shown below) and has incident angle θ1.
The dielectric material has uniform permittivity ε and µ = 1.

(a) Derive Snell’s law from the boundary conditions of electrodynamics.

Consider light propagating in a crystal with µ = 1 and dielectric tensor εij. Along the
principal crystalline axes εij is given by

εij =

ε1 0 0
0 ε2 0
0 0 ε3

 , (10)

and thus, along the axes Di = εiEi (no sum over i).

(b) Starting directly from the Maxwell equations in the dielectric medium, show that the
frequency and wave numbers of the plane wave solutions E(t, r) = Eeik·r−iωt in the
crystal are related by

det

(
kikj − k2δij +

ω2εi
c2

δij

)
= 0 (no sum over i). (11)

Now consider light of frequency ω in vacuum incident upon a dielectric crystal. The light
has incident angle θ1, and propagates in the x − y plane, i.e. kz = 0. The incident light is
also polarized in x−y plane, and the axes of the dielectric crystal are aligned with the x, y, z
axes (see below). Only the y axis of the crystal has a slightly larger dielectric constant than
the remaining two axes,

εij =

ε 0 0
0 ε (1 + δ) 0
0 0 ε

 , (12)

with δ � 1.

(c) Determine angle of refraction (or sin θ2) including the first order in δ correction to
Snell’s law.

(d) Is the refracted angle smaller or larger than in the isotropic case? Explain physi-
cally. Does the angular dependence of your correction makes physical sense? Explain
physically.

(e) If the incident light is polarized along the z axis (out of the x− y plane), what is the
deviation from Snell’s law? Explain physically.
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Figure 1: Snell’s law geometry
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Problem 4. Analysis of the Good-Hänchen effect

A “ribbon” beam1 of in plane polarized radiation of wavelength λ is totally internally reflected
at a plane boundary between a non-permeable (i.e. µ = 1) dielectric media with index of
refraction n and vacuum (see below). The critical angle for total internal reflection is θoI ,
where sin θoI = 1/n. First assume that the incident wave takes the form E(t, r) = EIe

ik·r−iωt

of a pure plane wave polarized in plane and study the transmitted and reflected waves.

(a) Starting from the Maxwell equations, show that for z > 0 (i.e. in vacuum) the electric
field takes the form:

E2(x, z) = E2e
−ω
c
(
√
n2 sin θ2I−1)zei

ωn sin θI
c

x (13)

(b) Starting from the Maxwell equations, show that for θI > θ0I the ratio of the reflected
amplitude to the incident amplitude is a pure phase

ER
EI

= eiφ(θI ,θ
o
I ) (14)

and determine the phase angle. Thus the reflection coefficient R = |ER/EI |2 = 1
However, phase has consequences.

(c) Show that for a monochromatic (i.e. constant ω = ck) ribbon beam of radiation in
the z direction with a transverse electric field amplitude, E(x)eikzz−iωt, where E(x) is
smooth and finite in the transverse extent (but many wavelengths broad), the lowest
order approximation in terms of plane waves is

E(x, z, t) = ε

∫
dκ

(2π)
A(κ)eiκx+ikz−iωt (15)

where k = ω/c. Thus, the finite beam consists of a sum plane waves with a small range
of angles of incidence, centered around the geometrical optics value.

1By a “ribbon” beam I mean a beam which has finite transverse extent in the direction perperndicular
kI lying in the x-z place as drawn above. But, the beam is infinite in extent in the y direction (coming out
of page in the figure above) . Thus the incoming and outgoing “ribbion” beams form a kind of wedge.
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(d) Consider a reflected ribbon beam and show that for θI > θoI the electric field can be
expressed approximately as

ER = εRE(x′′ − δx)eikR·r−iωt+iφ(θI ,θ
o
I ) (16)

where εR is a polarization vector, x′′ is the coordinate perpendicular to the reflected
wave vector kR, and the displacement δx = − 1

k
dφ
dθI

is determined by phase shift.

(e) Using the phase shift you computed, show that the lateral shift of the reflected in plane
polarized beam is

D‖ =
λ

π

sin θI√
sin2 θI − sin2 θoI

sin2 θoI
sin θ2I − cos θ2I sin2 θoI

(17)
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Problem 5. Reflection of a Gaussian Wave Packet Off a Metal
Surface:

In class we showed that the amplitude reflection coefficient from a good conductor (ω � σ)
for a plane wave of wavenumber k = ω/c is

HR(k)

HI(k)
= 1−

√
2µω

σ
(1− i) '

(
1−

√
2µω

σ

)
eiφ(ω) , (18)

where the phase is for ω � σ:

φ(ω) '
√

2µω

σ
. (19)

Consider a Gaussian wave packet with average wave number ko centered at z = −L at
time t = −L/c which travels towards a metal plane located at z = 0 and reflects. Show that
the time at which the center of the packet returns to z = −L is given by

t =
L

c
+
µδo
2c

(20)

where the time delay is due to the phase shift dφ(ωo)/dω, and δo =
√

2c/σµko is the skin
depth.
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