
Problem 1. (Optional) Electric field in the far field

If you get stuck check the notes online. The scalar and vector potential in the far field are
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The goal is to compute the electric field
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You should find a simple result. Interpret the answer using the definition of T

T ⌘ the time when the light should be emitted from r
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to arrive at the observation
point (t, r).
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(c) (Optional) Show that
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(d) (Optional) Use current conservation to express
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denotes the divergence at fixed observation time
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See "Technical note on computing radiation fifields"

=0

It is the derivative moving with  the light.
If you change the observation point (t,r) 
to (t + dt, r + c n dr)  the light the 
emitted at (T,r0)   will reach both
of these points without changing T or r0.



(e) (Optional) Conclude that only the transverse piece of the current to n contributes to
the radiation field
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Problem 2. Dipole Fields

Consider a small ectric dipole with harmonic time dependence, p(t) = p

o

e

�i!t. Recall that
in homework 6 we determined the electric field through order !2 in frequency using a quasi-
static near field expansion
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The purpose of the problem is to examine the transition to the far field, by computing the
exact electric field as a function of radius.

(a) Define near and far field. Express your results in terms of the wave number k = !/c.

(b) Start from the exact expressions
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(c) Show by direct di↵erentiation of the potentials A and ' that in the far field you recover
the result given in class
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Comment on all qualitative features.

When di↵erentiating, note carefully the contribution from A and ', and how they
conspire to make a field E which is transverse to n.

(d) Show that in general
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Comment on all qualitative features. Write Eq. (21) in coordinate space expressed in
terms of p(t

e

), ṗ(t
e

), and p̈(t
e

) with t

e

= t � r/c (compare to the typed course notes
sec. 11.3), and show consistency of this result with the near field result derived with
quasi-statics.
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Problem 3. Radiation in the lowest Bohr Orbit

In the Bohr model, a classical non-relativistic electron circles a proton in a circular orbit
with angular momentum L = ~, due to the Coulomb attraction between the electron and
the proton.

(a) Recall that that the electron kinetic energy is half of minus its potential energy (for
a coulomb orbit). Recall also that the lowest bohr orbit has velocity, � = ↵ where
� = v

e

/c, and ↵ = e

2

/(4⇡~c) = 1/137. Prove these statements.

(b) Write down the (total=kinetic + potential) energy and radius of the lowest Bohr orbit
in terms of the electron mass, m

e

, ~, c and ↵. What is the size of the Bohr radius a
o

compared to the electron compton wavelength, i.e. a
o

/(~/(m
e

c))?

(c) One of the di�culties with the Bohr model, is that classically the electron would
radiate. Determine the energy lost to radiation per unit time, for an electron in the
lowest orbit.

(d) Determine the energy radiated per revolution in the Bohr model, �E, and compare
�E to the (kinetic+potential) energy of the orbit, i.e. compute �E/E

orbit

. Express
�E/E
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in terms of the fine structure constant, and estimate its value.

(e) If the electron moves in the x, y plane determine the time averaged power radiated per
solid angle, dP/d⌦. Use a complex notation r(t) = a
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dP

d⌦
=

e

2

16⇡2

c

3

1

2
(1 + cos2 ✓) (!2

o

a

o

)2 (22)

where !

o

is the angular velocity of the electron

(f) Check your result of part (e) by integrating over solid angle and comparing with part
(c).

(g) Now we will study the polarization of the light. (These questions do not require
calculation).

(i) If the emitted light is observed along x axis, what is the polarization of the
radiated light? Explain physically.

(ii) If the emitted light is observed along the y axis, what is the polarization of the
radiated light? Explain physically.

(iii) If the emitted light is observed along the z axis, what is the polarization of the
light? Explain physically.

(h) The power radiated along the z-axis is twice as large as the power radiated along the
x-axis. Explain this result physically.
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Problem 4. Radiation from a Phased Array

A current distribution consists of N identical souces. The k-th source is identical to the
first source except for a rigid translation by an amount R

k

(k = 1, 2, . . . , N). The sources
oscillate at the same frequency but have di↵erent phases �

k

. That is

j
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(a) Show that the angular distribution of radiated power can be written as a product of
two factors: one is the angular distribution for N = 1; the other depends on R

k

and
�

k

, but not on the structure of the sources.

(b) The planes of two square loops (each with sided length a) are centered on (and lie
perpendicular to) the z-axis at z = ±a/2. The loop edges are parrallel to the x and y

coordinate axes. Find the angular distribution of power in the x�z plane if the current
at all points in both loops is I cos(!t). Make a polar plot of the angular distribution of
power for !c/a = 2⇡ and !c/a ⌧ 1. Identify the multipole character of the radiation
in the limit !a/c ⌧ 1.

You should find
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(c) The limit !a/c ⌧ 1 has a simple physical interpretation. Describe this interpretation
and show that it reproduces all aspects of the power distribution (including normal-
ization factors) in the limit !a/c ⌧ 1.

(d) Repeat part (b) when the current in the upper loop is I cos!t and the current in the
lower loop is �I cos!t.
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Problem 5. A Charged Rotor: Zangwill

Two identical point charges of charge q are fixed to the ends of a rod of length 2` which
rotates with constant angular velocity of 1

2

! in the x� y plane about an axis perpendicular
to the rod and through its center

(a) Calculate the electrid dipole moment p(t). Is there electric dipole radiation?

(b) Calculate the magnetic dipole moment m(t). Is there magnetic dipole radiation?

(c) Show that the electric quadruple moment is
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(d) Show that the time averaged angular distribution of radiated power is
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Problem 6. Basics of Relativity

(a) (Optional) The space time event at X
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(X0
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i) = (ct,x) according to an observer moving to the right along the x axis with
velocity v. Define the “light-cone” coordinates x+ ⌘ X
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is the so-called “rapidity” of the boost. What is x+

x

� and why is it unchanged under
boost?

(b) (Optional) A Lorentz tensor transforms as

T

µ⌫ = L

µ

⇢

L

⌫

�

T

⇢� (30)

Show that the transformation rule can be alternatively written

T

µ

⌫

= (L)µ
⇢

T

⇢

�

(L�1)�
⌫

(31)

or equivalently
T

µ

⌫

= L

µ

⇢

L

�

⌫

T

⇢

�

(32)

(c) (Optional) The frequency and wave number of a plane wave of light, e�i!t+ik·x = e
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form a lightlike four vector
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(e) (Optional) For a particle with four momentum P
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(f) (Do me! Not optional) A particle with velocity v

p
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Problem 7. One liners

(a) Starting from the Maxwell equations for F µ⌫ and the definition of F µ⌫ , derive the wave
equation �⇤A

µ = J

µ

/c.

(b) Starting from the maxwell equations for F

µ⌫ in covariant form, show that we must
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µ
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(c) (This is two lines) Show that the energy conserivation and force laws

dE

p

dt

=qE · v
p

(38)

dp

dt

=q(E +
v

p

c

⇥B) (39)

can be written covariantly
dP

µ

d⌧

= F

µ⌫

u

⌫

/c (40)

Note that E
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(the energy of the particle) is di↵erent from E the electric field.

(d) From Eq. (40) show that P
µ

P
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where ⇤ is an arbitrary function of X = (t, r).

(f) Given F

µ⌫ the only two Lorentz invariant quantities are F
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F

µ⌫ and F
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µ⌫ . Evaluate
these two invariants in terms of E and B
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