1 Introduction to the Maxwell Equations

1.1 The maxwell equations and units

- We use Heavyside Lorentz system of units. This is discussed in a separate note.
- The Maxwell equations are

$$
\begin{align*}
\nabla \cdot \boldsymbol{E} & =\rho \tag{1.1}\\
\nabla \times \boldsymbol{B} & =\frac{\boldsymbol{j}}{c}+\frac{1}{c} \partial_{t} \boldsymbol{E} \tag{1.2}\\
\nabla \cdot \boldsymbol{B} & =0 \tag{1.3}\\
-\nabla \times \boldsymbol{E} & =\frac{1}{c} \partial_{t} \boldsymbol{B} \tag{1.4}
\end{align*}
$$

In integral form we have

$$
\begin{align*}
& \oint_{S} \boldsymbol{E} \cdot \mathrm{~d} \boldsymbol{S}=Q_{\mathrm{enc}} \tag{1.5}\\
& \oint_{\ell} \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{\ell}=\frac{I}{c}+\frac{1}{c} \partial_{t} \Phi_{E} \tag{1.6}\\
& \oint_{S} \boldsymbol{B} \cdot \mathrm{~d} \boldsymbol{S}=0 \tag{1.7}\\
& -\oint_{\ell} \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{\ell}=\frac{1}{c} \partial_{t} \Phi_{B} \tag{1.8}
\end{align*}
$$

Here $\Phi_{E}=\int \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{S}$ is the electric flux, $\Phi_{B}=\int \boldsymbol{B} \cdot \mathrm{d} \boldsymbol{S}$ is the magnetic flux, and $I=\int_{S} \boldsymbol{j} \cdot \mathrm{~d} \boldsymbol{S}$ is the current crossing a surface, $S . \mathrm{d} \boldsymbol{S}$ is the surface element with a specified area and normal $\mathrm{d} \boldsymbol{S}=\boldsymbol{n} \mathrm{d}($ area $) . \mathrm{d} \boldsymbol{\ell}$ denotes a closed line integral element.

- We specify the currents and solve for the fields. In media we specify a constituent relation relating the current to the electric and magnetic fields.
- The Maxwell force law

$$
\begin{equation*}
\boldsymbol{F}=q\left(\boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}\right) \tag{1.9}
\end{equation*}
$$

- Hemholtz Theorems state:
(a) Given a curl free vecor field, $\boldsymbol{C}(\boldsymbol{x})$, there exsists a scalar function, $S(\boldsymbol{x})$, such that $\boldsymbol{C}=-\nabla S$:

$$
\begin{equation*}
\text { if } \nabla \times \boldsymbol{C}(\boldsymbol{x})=0 \text { then } \quad \boldsymbol{C}=-\nabla S(\boldsymbol{x}) \tag{1.10}
\end{equation*}
$$

(b) Given a divergence free vector field, $\boldsymbol{D}(\boldsymbol{x})$, there exsists a vector field \boldsymbol{V} such that $\boldsymbol{D}=\nabla \times \boldsymbol{V}$:

$$
\begin{equation*}
\text { if } \nabla \cdot \boldsymbol{D}(\boldsymbol{x})=0 \quad \text { then } \quad \boldsymbol{D}=\nabla \times \boldsymbol{V}(\boldsymbol{x}) \tag{1.11}
\end{equation*}
$$

The converses are easily proved, $\nabla \times \nabla S(\boldsymbol{x})=0$, and $\nabla \cdot \nabla \times \boldsymbol{V}(\boldsymbol{x})=0$ There are two very important consequences for the Maxwell equations.
(a) From the source free Maxwell equations (eqs. three and four) one finds that

$$
\begin{align*}
\boldsymbol{B} & =\nabla \times \boldsymbol{A} \tag{1.12}\\
\boldsymbol{E} & =-\frac{1}{c} \partial_{t} \boldsymbol{A}-\nabla \phi \tag{1.13}
\end{align*}
$$

(b) Current conservation follows by manipulating the sourced maxwell equations (eqs. one and two)

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot \boldsymbol{j}=0 \tag{1.14}
\end{equation*}
$$

- For a system of characteristic length L (say one meter) and characteristic time scale T (say one second), we can expand the fields in $1 / c$ since $(L / T) / c \ll 1$:

$$
\begin{align*}
& \boldsymbol{E}=\boldsymbol{E}^{(0)}+\boldsymbol{E}^{(1)}+\boldsymbol{E}^{(2)}+\ldots \tag{1.15}\\
& \boldsymbol{B}=\boldsymbol{B}^{(0)}+\boldsymbol{B}^{(1)}+\boldsymbol{B}^{(2)}+\ldots \tag{1.16}
\end{align*}
$$

where each term is smaller than the next by $(L / T) / c$. At zeroth order we have

$$
\begin{align*}
\nabla \cdot \boldsymbol{E}^{(0)} & =\rho \tag{1.17}\\
\nabla \times \boldsymbol{E}^{(0)} & =0 \tag{1.18}\\
\nabla \cdot \boldsymbol{B}^{(0)} & =0 \tag{1.19}\\
\nabla \times \boldsymbol{B}^{(0)} & =0 \tag{1.20}
\end{align*}
$$

These are the equations of electro statics. Note that $\boldsymbol{B}^{(0)}=0$ to this order (for a field which is zero at infinity)

- At first order we have

$$
\begin{align*}
\nabla \cdot \boldsymbol{E}^{(1)} & =0 \tag{1.21}\\
\nabla \times \boldsymbol{E}^{(1)} & =0 \quad\left(\text { since } \partial_{t} \boldsymbol{B}^{(0)}=0\right) \tag{1.22}\\
\nabla \cdot \boldsymbol{B}^{(1)} & =0 \tag{1.23}\\
\nabla \times \boldsymbol{B}^{(1)} & =\frac{\boldsymbol{j}}{c}+\frac{1}{c} \partial_{t} \boldsymbol{E}^{(0)} \tag{1.24}
\end{align*}
$$

This is the equation of magneto statics, with the contribution of the Maxwell term, $1 / c \partial_{t} \boldsymbol{E}^{(0)}$, computed with electrostatics. Note that $\boldsymbol{E}^{(1)}=0$

