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13.3 Synchrotron Radiation

(a) For a relativistic particle moving in a circle. The particle emmits light beamed in its direction of
motion. Thus, an observer a large distance aweay from the rotational source will see pulses of light,
when the strobe light of the particle points in his direction.

(b) The pulses have width

∆t ∼ Ro/c

γ3
(13.35)

You should be able to explain this result. Specifically, the light is formed at the source over a time,

∆T ' Ro/c
γ , since the angular velocity of the source is Ro/c and the angular width of the particles radi-

ation cone is 1/γ. Then using the relation between formation time and observation time, Eq. (13.10),
we find ∆t.

The frequency width ∆ω ∼ 1/∆t

∆ω ∼ γ3

Ro/c

(c) The frequency spectrum for circular motion is derived by evaluating the integrals in Eq. (13.17) for
circular motion. This is done in we evaluated this in the limit where the pulses are very narrow. The
fourier spectrum of a single pulse is expressed in the following form
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(13.36)

where

ω∗ =
3cγ3

Ro
(13.37)

where F (x, y) is a dimensionless order one function of x, y. You should understand the qualitative
features of the spectrum, and how these qualitative features are encoded in a formula like Eq. (13.36)

We record the result of integrating Eq. (13.17) for a single pulse
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where
ξ =

ω

ω∗
(1 + (γθ)2)3/2 (13.39)

This specific formula might help you understand with the previous item.

(d) We Fourier analyzed a sequence of pulses in different contexts (e.g. a sequence of laser pulses or a
sequence of synchrotron pulses). You should be able to show that the Fourier transform of n-pulses

En(ω) = E1(ω)

(
sin(nωTo/2)

sin(ωTo/2)

)
(13.40)

where E1(ω) is the Fourier transfrom of one pulse. This is used to show that the time average power
radiatied into the m-th harmonic is
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o

|rE1(ωm)|2 (13.41)

(e) Finally you should be able to prove the following identities, if

∆(t) ≡
∞∑

n=−∞
δ(t− nTo) (13.42)
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Then this function has a Fourier series representation:

∆(t) =
1

To

∞∑
m=−∞

e−iωmt (13.43)

with ωm ≡ 2πm
To . The Fourier transform of ∆(t) is

∆(ω) =
∑
n

eiωnTo =
2π
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∑
m

δ(ω − ωm) (13.44)

13.4 Bremsstrahlung

(a) During a collsion of charged particles, the scattered charged particles is rapidly accelerated over a short
time period τaccel, from v1 to v2. This causes radiation

initial state radiation

final state radiation

τaccel

v1

v2

(b) Evaluating the integrals in Eq. (13.17) or Eq. (13.17b), we find that the radiated energy spectrum is:
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The n× n× v gives you the electric field, and the result is squared. One could also use the magnetic
field
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(c) Much can be said about this important result:

i) It is independent of frequency. Thus it would seem that
∫∞

0
dω dI

dωdΩ →∞. In practice the energy
(photon) spectrum will agree with Eq. (13.45), until the photon energy is comparable to the energy
of the particles. Or until the formation time of the radiation ∆T ∼ 1

ω(1−n·β) becomes comparable

to the time scale of acceleration, τaccel. For ultra-relativistic particles this means that:

ωmax ∼
γ2

τaccel(1 + (γθ)2)

ii) Since the energy spectrum is independent of frequency the number of soft photons is divergent
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ω
(13.47)

where α ' q2/(4π~c) ' 1/137 for an electron.
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iii) For very relativistic particles the radiation is strongly peaked in either the direction of v1 or v2,
see figure. For very relativistic particles, γ →∞, you should be able to show that the number of
photons per frequency interval, per angle (measured with respect to v1 or v2) is approximately

dN ' 2α

π

dω

ω

dθ

θ
(13.48)

Here θ is measured with respect either the v1 or v2 axes and is assumed to be small but large
compared to 1/γ: 1

γ � θ � 1. The fine structure constant is α = q2/(4π~c) ' 1/137 for an
electron. Thus we see that soft photons are logarithmically distributed in angle and in frequency.
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