


13 Radiation from Relativistic Charged Particles

13.1 Basic equations

(a) We wrote down the wave equations in the covariant gauge:

−�Φ =ρ(to, ro) (13.1)

−�A =J(to, ro)/c (13.2)

(b) Then we used the green function of the wave equation

G(t, r|toro) =
1

4π|r − ro|
δ(t− to +

|r − ro|
c

) (13.3)

to determine the potentials (Φ,A) with the current

Jµ

c
= (ρ,

J

c
) = (q δ3(ro − r∗(to)) , q

v(to)

c
δ3(ro − r∗(to))) (13.4)

This yields the Lienard-Wiechert potentials

Φ =
q

4π|r − r∗(T )|
1

1− n · β(T )
=⇒ q

4πr

1

1− n · β(T )
(13.5)

A =
q

4π|r − r∗(T )|
β(T )

1− n · β(T )
=⇒ q

4πr

β(T )

1− n · β(T )
(13.6)

where the retarded time is

T (t, r) = t− |r − r∗(T )|
c

=⇒ T (t, r) = t− r

c
+
n · r∗(T )

c
(13.7)

The terms after the Longrightarrow indicate the far field limit

(c) The Lienard Wiechert potential can also be obtained by integrating over ro in Eq. (11.8).

(d) The factor “collinear facor” (my name), or dT/dt

dT

dt
=

1

(1− n · β)
(13.8)

dT

dri
=

1

(1− n · β)

−ni
c

(13.9)

is quite important. We gave a physical interpretation of it in class. If a wave form is observed to have
a time scale of ∆t, then the formation time of the wave, ∆T , is

∆T =
dT

dt
∆t =

∆t

1− n · β
(13.10)

In particular, a fourier component with frequency ω in the observed wave was formed over the time

∆T ∼ 1

ω(1− n · β)
(13.11)
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66 CHAPTER 13. RADIATION FROM RELATIVISTIC CHARGED PARTICLES

(e) In the ultrarelativistic limit 1/(1 − β cos θ) is often approximated for θ � 1 and for ultra-relativistic
particles 1− β ' 1/2γ2

1

1− n · β
=

2γ2

1 + (γθ)2
(13.12)

(f) The magnetic and electric fields can be determined from E = − 1
c∂tArad − ∇Φ. As discussed in a

separate note (“retarded time.pdf”), In the far field limit this is the same as computing

E(t, r) =n× n× 1

c
∂tArad(T ) (13.13a)

=n× n× 1

1− n · β
1

c

∂

∂T
Arad(T ) (13.13b)

=
1

1− n · β
1

c

∂

∂T

[
q

4πr

n× n× β
1− n · β

]
ret

(13.13c)

=
q

4πrc2

[
n× (n− β)× a

(1− n · β)3

]
ret

(13.13d)

The []ret indicates that the velocity and acceleration are to be evaluated at the retarded time T (t, r).

The magnetic field is

B = n×E (13.14)

For below, it is worth noting below that

1

c

∂

∂T
[n× n×Arad] =

1

c

∂

∂T

[
q

4πr

n× n× β
(1− n · β)

]
(13.15)

=
q

4πrc2

[
n× (n− β)× a

(1− n · β)2

]
ret

(13.16)

(g) We will often be interested in the frequency distribution of the radation.

E(ω, r) ≡
∫ ∞
−∞

dt eiωtE(t, r) (13.17a)

=
q eiωr/c

4πrc2

∫ ∞
−∞

dT eiω(T−n·r∗(T )/c)n× (n− β)× a
(1− n · β)2

(13.17b)

=
q (−iω eiωr/c)

4πrc

∫ ∞
−∞

dT eiω(T−n·r∗(T )/c) n× n× β (13.17c)

We are computing the fourier transfrom of Erad(t, r) to find Erad(ω, r). Changing variables to integrate
over T instead of t yields Eq. (13.17b) with Eq. (13.13d). Integrating by parts using Eq. (13.15) yields
Eq. (13.17c). This final form Eq. (13.17c) is often the most convenient, but sometimes it is just easier
to use Eq. (13.17b) which shows explicity the dependence on acceleration.

Observables in the far field

(a) The energy per time per solid angle received at the detector is

dW

dtdΩ
=
dP (t)

dΩ
=r2S · n (13.18)

=c|rE|2 (13.19)

This is what you want to know if you want to find out if the detector will burn up.
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(b) We often wan’t to know how much energy was radiated over a given period of acceleration, T1 . . . T2.
For example how much energy was lost by the particle as it moved through one complete circle. Then
we want to evaluate the energy radiated per retarded time from T1 up to the time it completes the
circle T2

dW

dTdΩ
=
dP (T )

dΩ
=r2S · n dt

dT
(13.20)

=c|rE|2(1− n · β) (13.21)

(c) We are also interested in the frequency distribution of the emitted radiation. The energy per dω/(2π)
per solid angle is

(2π)
dW

dωdΩ
≡ c|rE(ω, r)|2 (13.22)

Since the sign of the ω is without significance (for real fields such as the electromagnetic fields), we
sometimes use

dI

dωdΩ
≡ c|rE(ω, r)|2

2π
+
c|rE(−ω, r)|2

2π
=

c|rE(ω, r)|2

π
(13.23)

So that
dW

dΩ
=

∫ ∞
0

dI

dωdΩ
(13.24)

(d) The energy spectrum can be interperted as the average number of photons per frequency per solid
angle

dI

dωdΩ
= ~ω

dN

dωdΩ
(13.25)

13.2 Relativistic Larmour

(a) For a particle undergoing arbitrary relativistic motion, we evaluated the energy per retarded time per
solid angle

dP (T )

dΩ
=

q2

16π2c3
|n× (n− β)× a|2

(1− n · β)5
(13.26)

(b) Integrating over angles we get

P (T ) =
dW

dT
=
q2

4π

2

3c3
γ6
[
a2‖ +

a2⊥
γ2

]
(13.27)

where a‖ is the projection of a = d2x/dt2 along the direction of motion, and a⊥ is the component of
a perpendicular to the direction of motion, i.e. for v in the z direction

a = (ax⊥, a
y
⊥, a‖) (13.28)

(c) The acceleration four vector is

A µ =
d2xµ

dτ2
(13.29)

For a paraticle moving along in the z-direction, the acceleration in the particle’s locally inertial frame
(i.e. the frame that is instantaneously moving with the particle) is

(A 0,A 1,A 2,A 3)
∣∣
rest frame = (0, αx⊥, α

y
⊥, α‖) (13.30)

While in the lab frame A µ is found by boosting this result. The acceleration a = dv
dt is found from

this result and the definition of propper time dτ = dt/γ,

a = (ax⊥, a
y
⊥, a‖) = (γ2αx⊥, γ

2αy⊥, γ
3α‖) (13.31)

You should be able to prove this. The relativistic Larmour fourmula can then be written

P (T ) =
q2

4π

2

3c3
AµA

µ (13.32)
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(d) For straight line acceleration at very large γ, we found that that the radiation is emitted within a cone
of order

∆Θ ∼ 1/γ . (13.33)

For θ very small θ ∼ 1/γ we found,

dP (T )

dΩ
=

2q2

π2

a2

c3
γ8

(γθ)2

(1 + (γθ)2)5
. (13.34)

You should feel comfortable deriving this result.
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