Shear Viscosity - Basics:

$$\frac{1}{F^{\times}} = -\gamma \frac{\partial u^{\times}}{\partial y}$$

$$Up^{\times} = \int UT^{\circ \times} = \int dy (e+p) \Delta u^{\times}$$

$$= - \int dy (e+p) \partial u^{\times} y$$

$$= - \int dy (e+p) \partial u^{\times} y$$

 $\Delta p^{x} = -(e_{tp}) \frac{\partial u^{x}}{\partial y} (\Delta y)^{2}$

2

Kinetics

So (Dy)2 ~ At (lmfp)2

T,

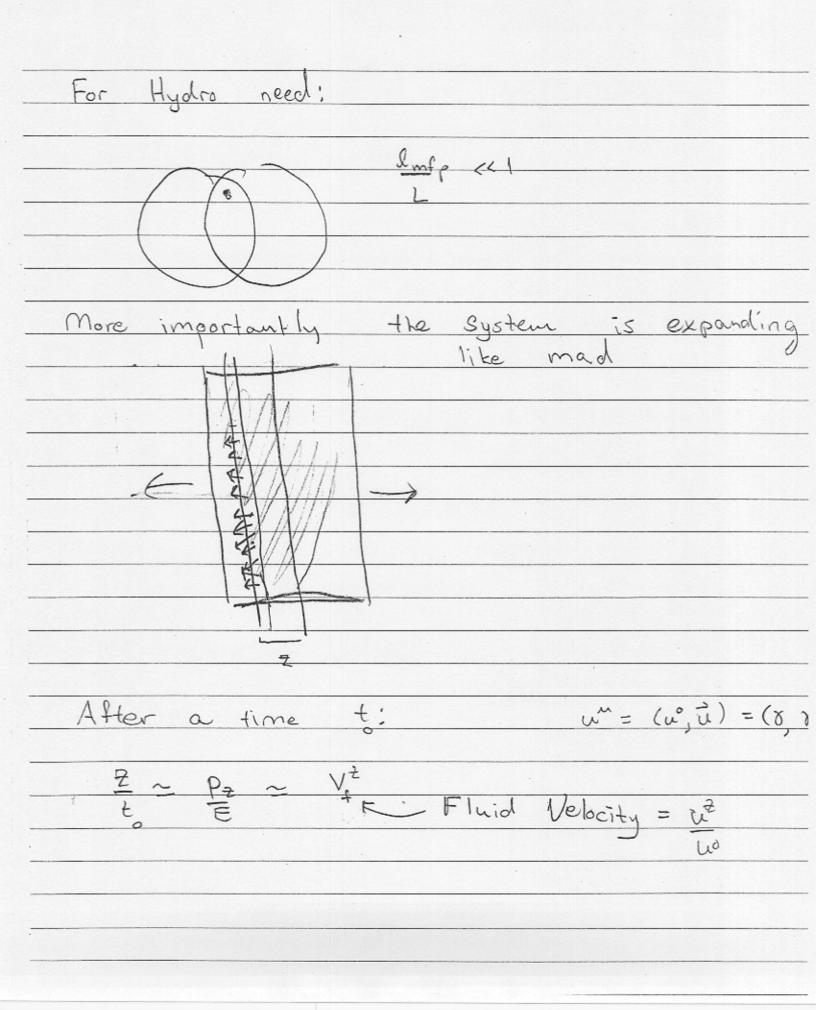
Define the momentum diffusion coefficient (ay) = 2D, at Dy ~ Imp

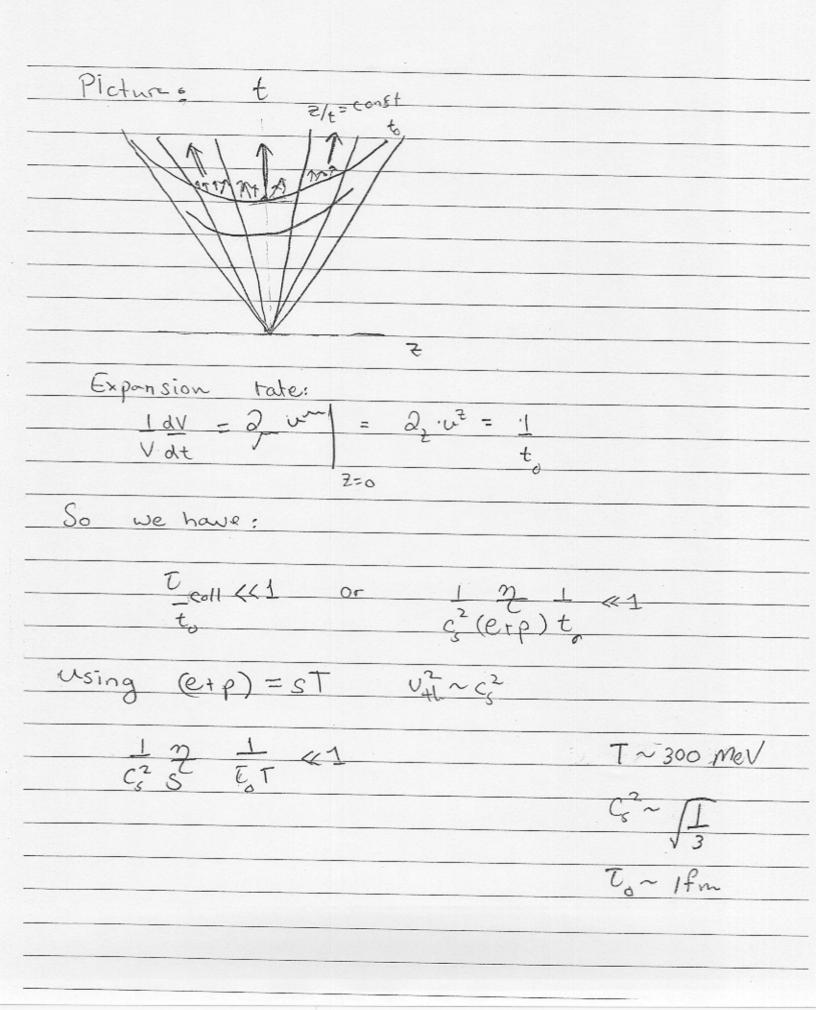
4.0

$$D_{\eta} = \frac{\eta}{e+\rho} \qquad \eta \sim (e+\rho) v_{th}$$

So (exp)/n.vth ~ Ptyp and find

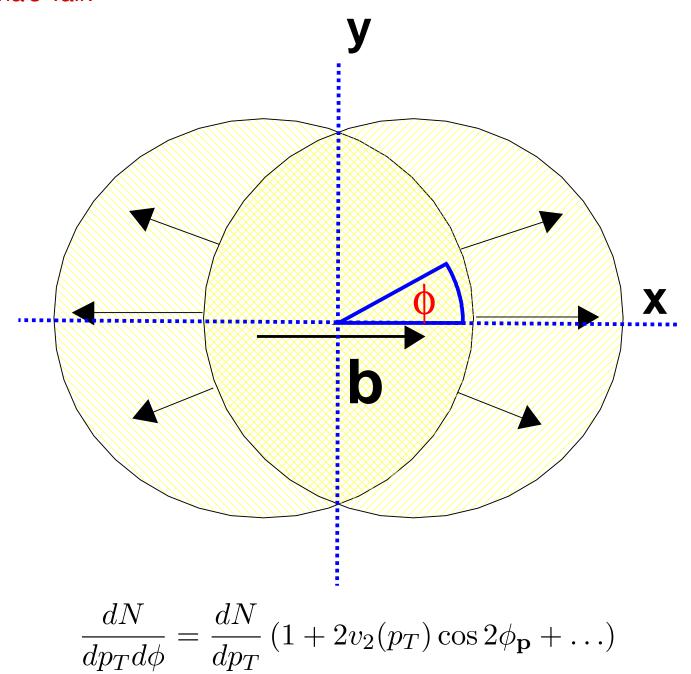
High temperature QCD (Above Deconfinement) And



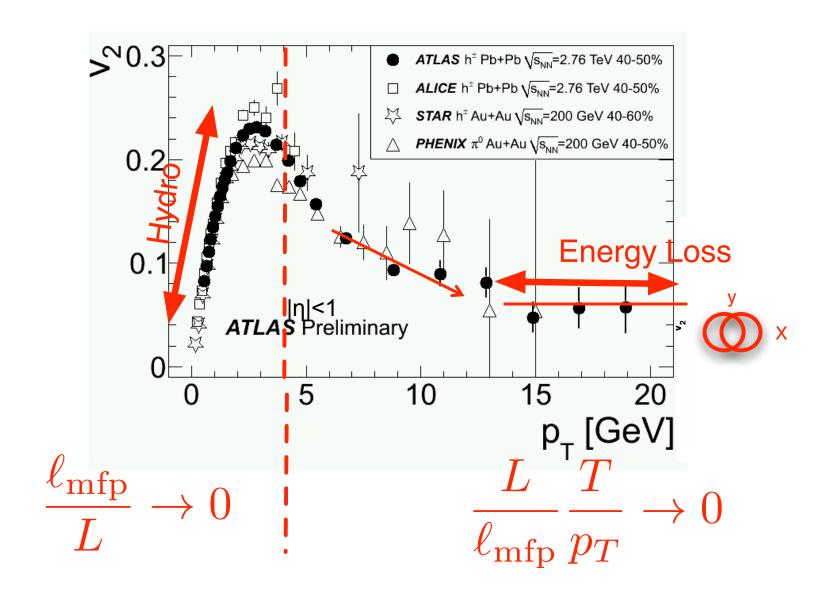


Now $\left(\frac{3}{5}\right)\left(\frac{1}{5}\right)\left(\frac{300\,\text{MeV}}{T}\right)\ll 1$

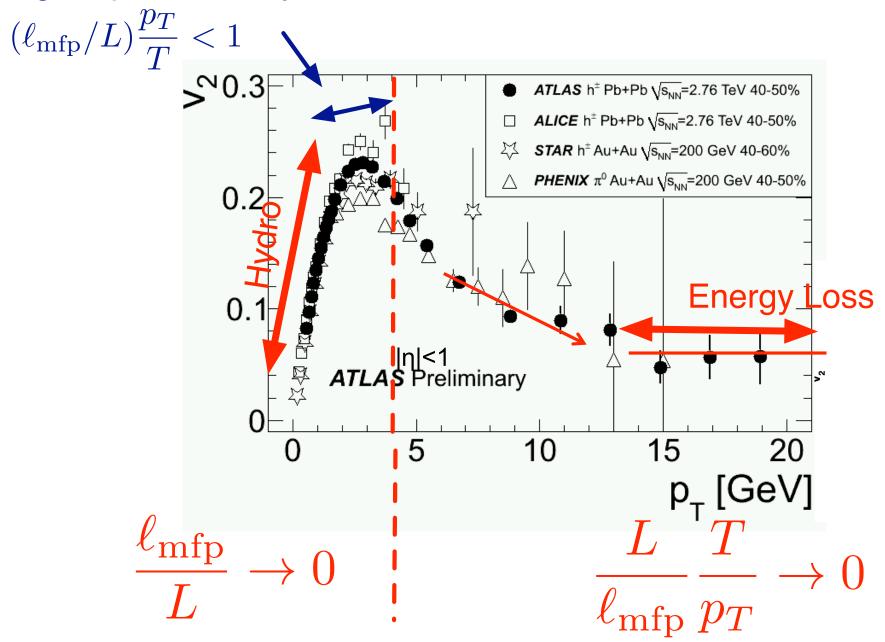
From Krishna's Talk

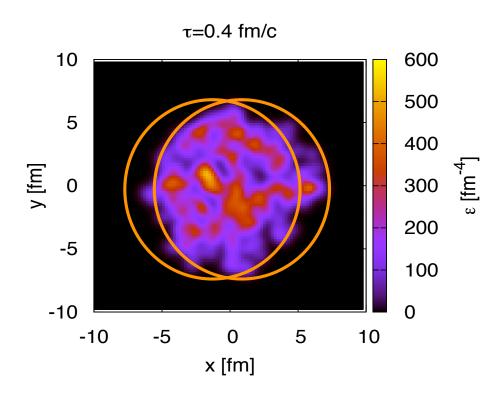


Hydro and Energy loss:



Higher pt but still hydro



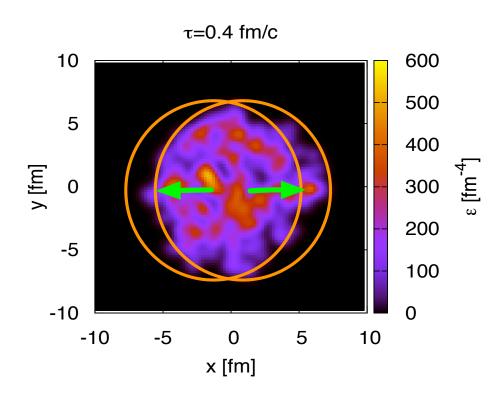


- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3 (Alver)

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

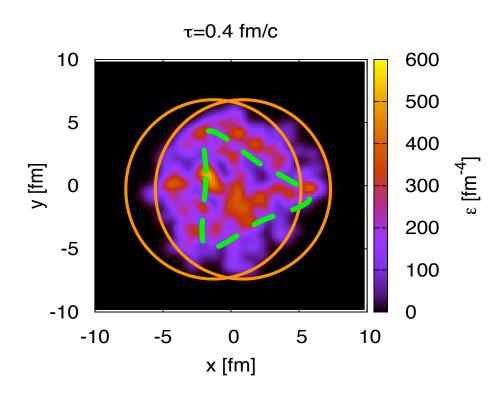


- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$



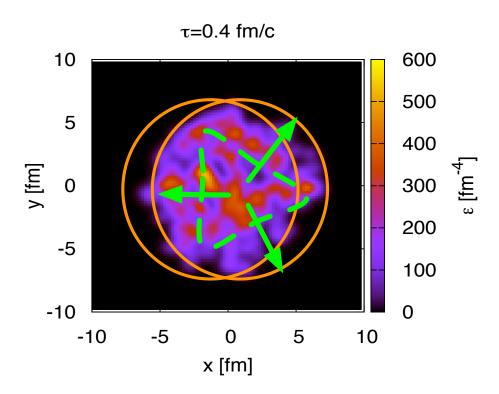
- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

Determining the Shear Viscosity of QGP with Flow:

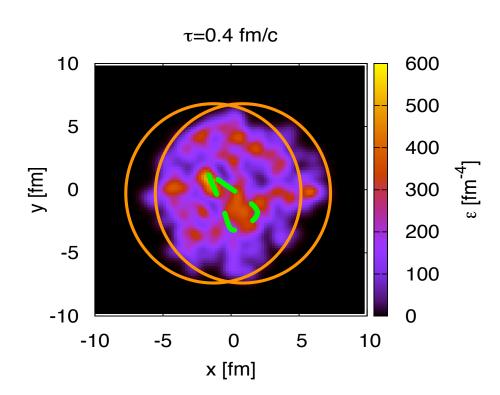


- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$



- 1. Characterize energy density with ellipse
 - Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

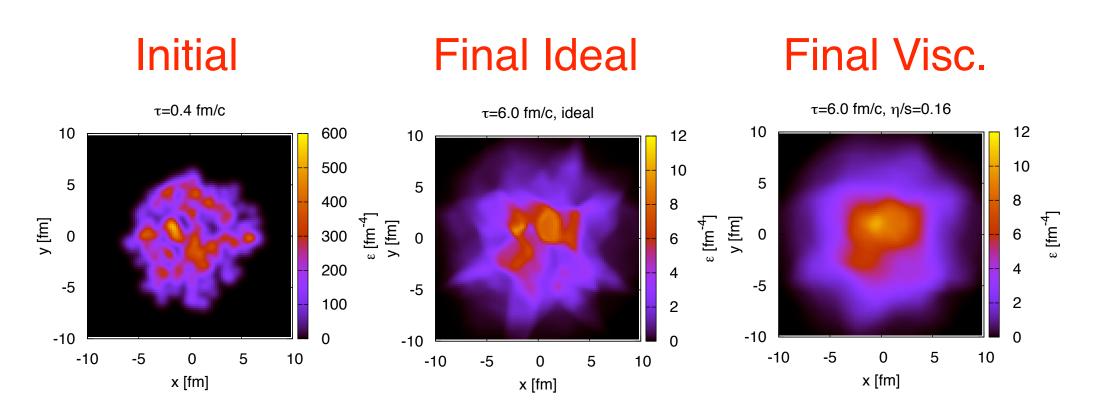
- 2. Around almond shape are *fluctuations*
 - Triangular Shape gives v_3 (Alver)

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

3. Hot-spots give correlated higher harmonics

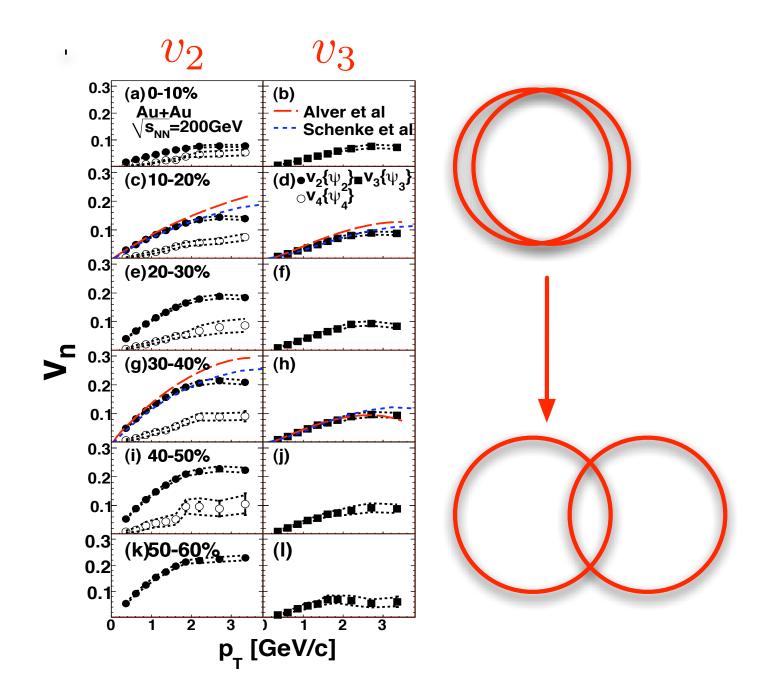
$$v_n = \langle \cos n(\phi_{\mathbf{p}} - \Psi_n) \rangle$$

3+1 E by E viscous hydro simulations by Schenke et al

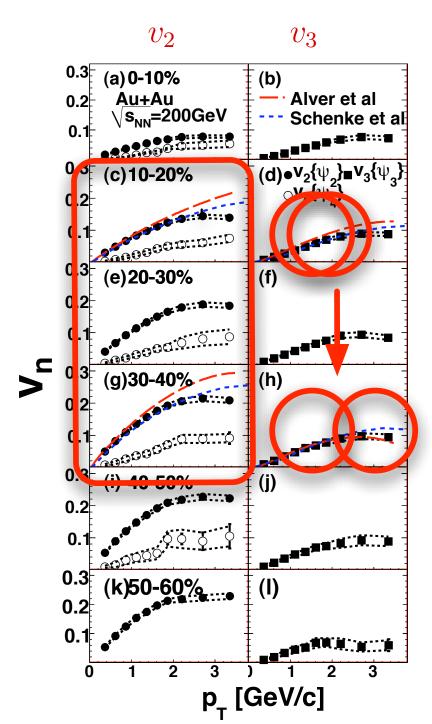


Higher harmonics are damped most by viscosity

Hydro Working



Phenix flow data



Hydro Working:

(schenke, luzum)

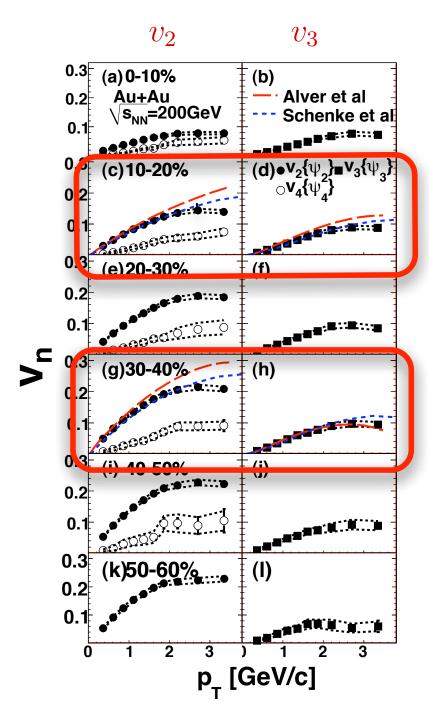
1. Centrality dependence of v_2 and v_3

$$\sim (\ell_{
m mfp}/L)$$

- 2. Relative strength of v_2 and v_3
- 3. p_T dependence of viscous corrections

$$\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}$$

Phenix flow data



Hydro Working:

(schenke, luzum)

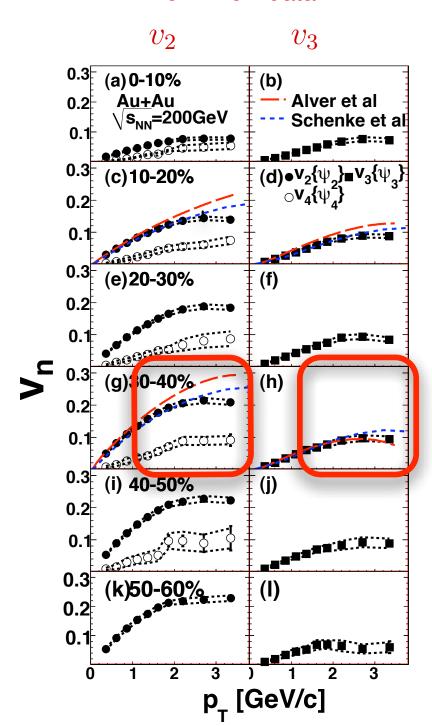
1. Centrality dependence of v_2 and v_3

$$\sim (\ell_{
m mfp}/L)$$

- 2. Relative strength of v_2 and v_3
- 3. p_T dependence of viscous corrections

$$\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}$$

Phenix flow data



Hydro Working:

(schenke, luzum)

1. Centrality dependence of v_2 and v_3

$$\sim (\ell_{
m mfp}/L)$$

- 2. Relative strength of v_2 and v_3
- 3. p_T dependence of viscous corrections

$$\sim (\ell_{\rm mfp}/L) \frac{p_T}{T}$$

Hydro Working

Why I believe that there's hydro at RHIC (and why you should too):

- √ Ideal hydro works kind-of (not for today)
- √ Viscous corrections systematically capture deviations of data from ideal hydro

Makes the bounds $1/4\pi < \eta/s < 4/4\pi$ kind of convincing

Calculating Shear Viscosity @ Kinetics:
(0, + v, 2) A = - C(f)
$\left(\partial_{+} + \nu_{2} \partial_{x}\right) A = -C(A)$
Then
C[t] = Lbk-ob, k, [tbt (1+ti)(t+ti) -tbt (1+tk X1+tb)]
G (13
(2) [111/2 - 8.402 2
(2) $\Gamma_{pk} \rightarrow p'k' = M ^2 = 8g^4 C_1^2 = 8g^4 C_1^2$
Parp P
k k'

Near Equilibrium: temperature variation and flow obey hydro (x) T8+ T= (x)T (x) $f_p = f_e(\vec{p}) + gf$ $f_e = \frac{1}{e^{(E_f - \vec{p} \cdot \vec{u}(x))/T(x)} - 1} \sim n_p + n_p (\underline{I} + n_p) \left[\frac{\vec{p} \cdot \vec{u}}{T^2} + \frac{\vec{E}_p \cdot \vec{v}(x)}{T^2} \right]$ 2) We want to know Sf - first viscous correct · Proportional Strains (d'us) others (ignore forno Sf(p) = np(1+n) xp Sf(p) = np (1+np) pipi (2, n; > X(p) Tis = psis - n (o'us) = } fe + Sf

Now for fe + Sf [at + vp 2]fe = C[fe + Sf] C[fe] = 0 Wark:

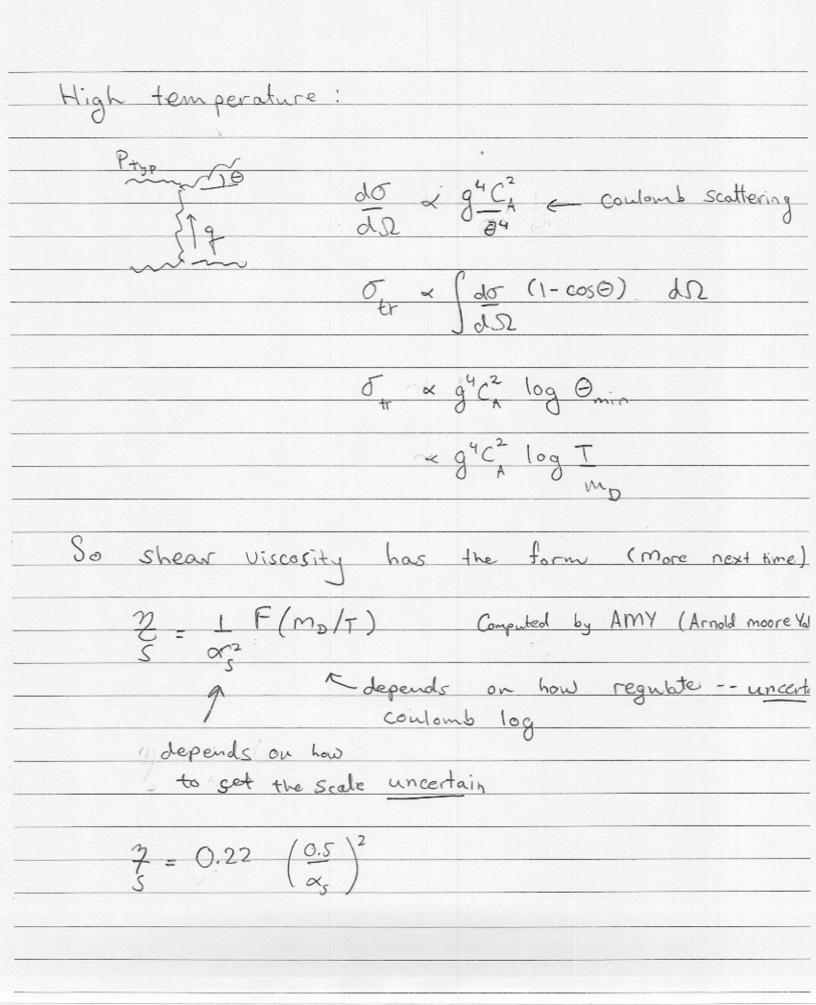
Hydro

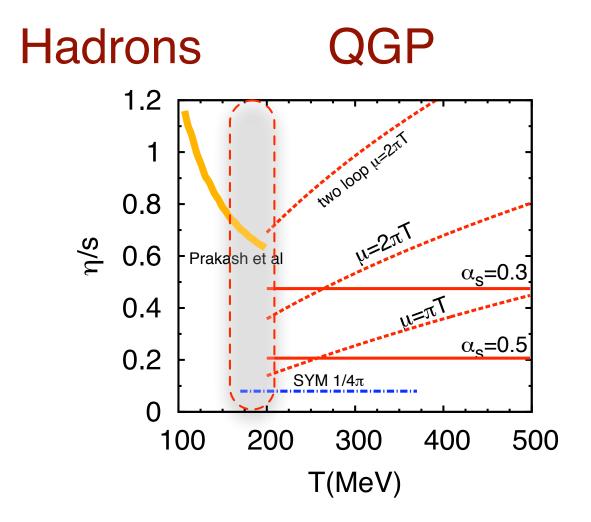
Y

O Use Form to wrete time derivs as spatial derivs 2) Thermodynamic identities 3) Detailed Balance npnk (1+npi) (1+nk) Pt >p/k' = Prox (1+n) (1+nx) Pk -> p'k' Find an equation for x (...) $\partial_i u^i + p^i p^j \langle \partial_i u_i \rangle = -\int_{Pk \to p'k'} \frac{n_e n_k (1+n_{p'})(1+n_{k'})}{2TE}$ Responsible

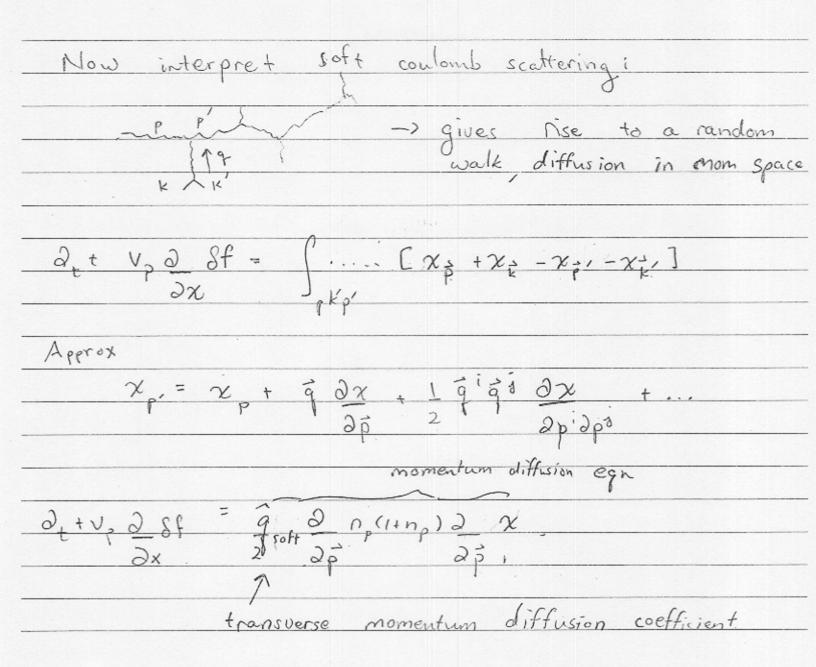
for Bulk viscosity General Structure: A matrix egn for x = p'po (ajuj) = Cpp Xp Numerically invert matrix egn determiner xo

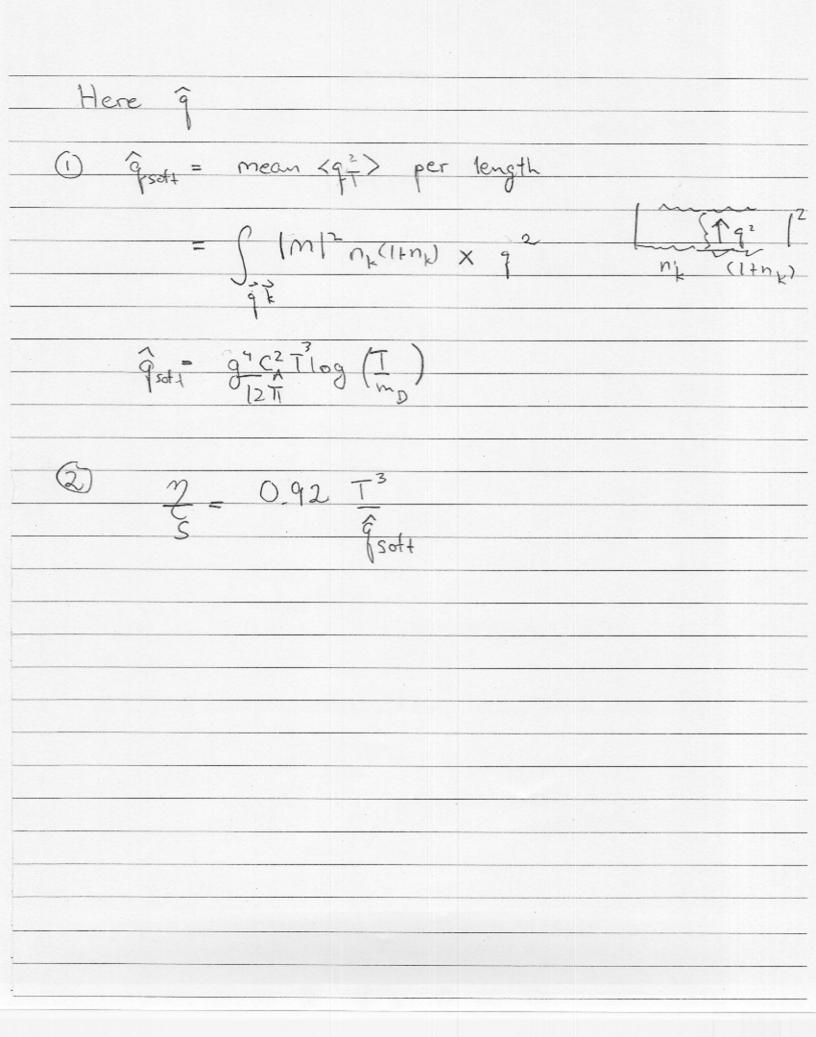
QCD Scattering
Hadronic Phase:
40
P /TT de
TT TE CM
/T /T cm
Mostly known experimentally - pretty robust
7 computed by Prakash et al ~ 1992





$$0.36 \left(\frac{\eta/s}{0.3}\right) \left(\frac{1 \,\mathrm{fm}}{\tau_o}\right) \left(\frac{300 \,\mathrm{MeV}}{T_o}\right) \ll 1$$





Con	ments	
0	So if compling is too strong such that	
	So if compling is too strong such that the Debye Sector is non perturbative - at least we can parametrize @ one number	
æ	Get à from experiment?	
G	Ads?	