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Heavy Quarks in equilibrium Quantum Field Theory

M
d2x
dt2

= −η︸︷︷︸
Drag

ẋ + ξ︸︷︷︸
Noise

of Brownian Motion

“Artist’s” conception

1. In equilbrium the drag and noise are balanced〈
ξ(t)ξ(t′)

〉
= 2Tη δ(t− t′)⇐ Fluctuation Dissipation Theorem



AdS/CFT

• Classical solutions in curved spacetime = CFT for nonzero temperature

ds2 = (πT )2r2
[−f(r)dt2 + dx2

]
+

dr2

r2f(r)
f(r) = 1− 1

r4

Gravity

 

“Our” world r =∞

Black Hole r = 1

How can a static metric be dual to equilibrium=constant fluctuations ?



Heavy Quarks in equilibrium AdS

• Heavy quarks are classical strings in the 5d equilibrium AdS black hole geometry

• Solve classical string EOM and find:

Gravity

Stretched horizon

r = rm

r = 1

rh = 1 + ǫ

Not the dual of an equilibrated quark!



Detailed Balance and Hawking Radiation:

M
d2xo

dt2
= −η︸︷︷︸

Drag

ẋo + ξ︸︷︷︸
Noise

Gravity

UV Quant Flucts

xo

x(t, r)

Evolves to Classical

Prob Dist: (Son,DT;Iancu)

P [x, πx] ∝ e−βH[x,πx]

Goals:

1. Will show that Hawking Radiation is balanced by gravity

2. Generalize to non-equilibrium



Detailed Balance and Hawking Radiation (Technical Discussion)

Gravity

UV Quant Flucts

xo

x(t, r)

1. Fluctuations:

Grr ≡ 1
2
〈{x̂(t1, r1), x̂(t2, r2)}〉 ,

2. Dissipation (Spectral Density)

ρra−ar ≡ 〈[x̂(t1, r1), x̂(t2, r2)]〉 .

• Equilibrium≡ Fluctuation Dissipation Theorem

Grr(ω, r1, r2) =
(

1
2

+ nB(ω)
)
ρra−ar(ω, r1, r2) n(ω) ≡ 1

eω/T − 1



Formulas

• Action for string fluctuations, hµν = string metric

S1 − S2 =

√
λ

2π

∫
dtdr gxx

[
−
√
hhµν∂µxr∂νxa

]
,

• hµν is the string metric

hµνdσµdσν = −(πT )2r2f(r)dt2 +
dr2

f(r)r2
,

• Retarded Green Function

iGra(t1r1|t2r2) ≡ θ(t− t′) 〈[x̂(t1, r1), x̂(t2, r2)]〉 ,

Gra(t1r1|t2r2) is the classical response to a force at t2r2√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Gra(t1r1|t2r2) = δ(t1 − t2)δ(r1 − r2) ,



The classical Green Function or response to a force:
√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
G = F δ(t1 − t2)δ(r1 − r2) ,

Upward wave

Downward wave

External Force



Outgoing G
eo

desi
c

(Infalling Time)

Ingoing Wave

Outgoing Wave

Reflected Wave 

v = t− 1
2πT

[
tan−1(r) + tanh−1(r)

]
v =Eddington time



Statistical Fluctuations

Gravity

UV Quant Flucts

xo

x(t, r)

Grr =
1
2
〈{x(t1, r1), x(t2, r2)}〉

• The statistical correlator obeys the homogeneous EOM

√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Grr(t1r1|t2r2) = 0

• So:

1. Specify the correlations (or density matrix) in the past

2. Final state fluctuations are correlated only through initial conditions



Correlations through Initial conditions
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Correlations through Initial conditions

Time

Consider Init

Data Here
Points uncorrelated

by this Init data
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Init data falls in



Correlations through Initial conditions
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At late times

This is the only 

initial data that matters
Correlated through

Initial conditions

Time

1. Final correlation come from correlated initial data very near horizon

• Short Wavelength

2. Initial data is inflated by near horizon geometry



Initial Data from Quantum Fluctuations

1. Initial data is determined at short distance = Flat Space Physics

2. Scalar Field in 1+1D vacuum flat space

1
2
〈{φ(X1), φ(X2)}〉 = − 1

4πK
log |µ ηµν∆Xµ∆Xν | K=norm of action

3. String flucts in near horizon geometry

Snear−horizon = η

∫
dtdr

[
−1

2

√
hhµν∂µx∂νx

]
η = Drag Coefficient

The near horizon initial condition is:

Grr(v1r1|v2r2)→ − 1
4πη

log

∣∣∣∣∣∣∣µ
local ∆s2︷ ︸︸ ︷
2∆v∆r

∣∣∣∣∣∣∣



Summary: Specify IC and Solve Equations of Motion
√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Grr(t1r1|t2r2) = 0
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log Init Cond

Correlated via

Time

Init. Cond

1′

1

2

2′

∝ log(∆r)

where the initial conditions are determined by the canonical commutation relations. Simi-
larly, the symmetrized correlation function also satisfies the homogeneous equations of mo-
tion √

λ

2π

[
∂µ gxx

√
hhµν∂ν

]
Grr(t1r1|t2r2) = 0 , (3.3)

but the initial conditions are determined by the density matrix of the quantum system
far in the past. The appropriate initial conditions for Grr and Gra−ar are discussed more
fully in Section III C. Finally all bulk to bulk correlation functions (Gra, Gra−ar, Grr) satisfy
Dirichlet, or normalizable, boundary conditions for asymptotically large radius, i.e. G→ 0
for r1, r2 →∞.

Since the supergravity equations of motion are essentially coupled oscillators, it is useful
to recognize that the retarded propagator for the simple harmonic oscillator is independent
of the density matrix. Only symmetrized correlations depend on the density matrix and
reveal a thermal state. Since the simple harmonic oscillator clearly illustrates the role of
the density matrix, we show how to compute commutator and anti-commutator oscillator
correlations using the Keldysh formalism in Appendix A.

B. Horizon Correlators

The equations of motion propagate initial data in the past to the future. This can be
made manifest for the symmetrized correlator by writing down a formal solution to Eq. (3.3)
in terms of retarded correlators. Specifically, given Grr and its time derivatives on some time
slice t1 = t2 = t0, the solution to Eq. (3.3) at later times is given by

Grr(1|2) =

[√
λ

2π

∫
dr′1 gxx

√
hhtt(r′1) Gra(1|1′)←→∂t′1

]

×
[√

λ

2π

∫
dr′2 gxx

√
hhtt(r′2) Gra(2|2′)←→∂t′2

]
Grr(1

′|2′) , (3.4)

where t′1 and t′2 are set equal to t0 after differentiating, and
←→
∂ =

−→
∂ −←−∂ . This formula

expresses the uniqueness of the correlator given its value and time derivatives on a Cauchy
surface.1 The physical interpretation of this solution is easy to understand. The two retarded
Green functions appearing in the integrals are convoluted with the separate arguments of
the initial data. These retarded Green functions causally propagate the initial data forward
in time.

To gain qualitative insight into how initial data is propagated by the retarded Green
functions, Figure 2 shows a congruence of outgoing radial null geodesics starting at time t =
t0. A generic geodesic reaches the boundary in a time ∆t ∼ 1/T . The information which is

1 The formula manifestly satisfies the equations of motion (3.3) for t1, t2 > t0. To see that it satisfies the
boundary conditions in the limit t1 → t0, one must know the time derivatives of Gra(1|1′) for t1 → t′1.
This derivative can be obtained by using the fact that Gra(1|1′) vanishes for t1 < t′1, and by integrating
t1 across t′1 with the equations of motion (3.1) to yield the canonical commutation relations

lim
t1→t′1

√
λ

2π
gxx

√
hhtt∂t1G(1|1′) = δ(r1 − r′1) .

An analogous formula holds for the derivative with respect to t′1.

6

Like Harmonic Oscllator



From initial data to final correlations in two steps:

t0

r = 1

r = 1 + ε
r

t

1′

1

2

Wednesday, January 26, 2011

Use Boltzmann approx
here Full wave eqn here

Gra(1|1′) =

Z
dt2Gra(1|2)

h
η
√
hhrr(r2)

←→
∂r2

i
r2=1+ε

Gra(2|1′) ,

(a) From horizon to stretched horizon – Waves are very short wavelength

– Use collisionless Boltzmann approximation (geodesic/WKB/eikonal approx)

(b) The stretched horizon to boundary – Waves are longer wavelength

– Use full wave equation



Fluctuations from Equations of Motion

Grr(1|2)︸ ︷︷ ︸
bulk flucts

=
∫

dt1hdt2h GR(1|1h) GR(2|2h)︸ ︷︷ ︸
outgoing Green fcns

Ghrr(1h|2h)︸ ︷︷ ︸
horizon flucts

,
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The fluctuations on the stretched horizon are from UV vacuum flucts in past

Ghrr(t1|t2) = Blow-up of initial data∝ log(r)

=− η

π
∂t1∂t2 log |1− e−2πT (t1−t2)| .



The horizon fluctuations and the Lyapunov exponent
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1. Thermal looking:

Ghrr(ω) =Fourier-Trans of − η

π
∂t1∂t2 log |1− e−2πT (t1−t2)|

=
(

1
2 + n(ω)

)
2ωη n(ω) ≡ 1

eω/T − 1

2. Temperature∝ inflation rate

2πT = Lyapunov exponent of diverging geodesics



Dissipation - Spectral Density

Gravity

UV Quant Flucts

xo

x(t, r)

ρra−ar = 〈[x̂(t1, r1), x̂(t2, r2)]〉
• The spectral density also obeys the EOM

√
λ

2π

[
∂µ gxx

√
hhµν∂ν

]
ρra−ar(t1r1|t2r2) = 0

• But initial conditions are given by the canonical commutation relations

η
√
hhtt(r1) lim

t2→t1

∂t1ρra−ar(t1r1|t2r2) = iδ(r1 − r2) .



Spectral Density

ρra−ar(1|2)︸ ︷︷ ︸
bulk spectral fcn

=
∫

dt1hdt2h GR(1|1h) GR(2|2h)︸ ︷︷ ︸
outgoing Green fcns

ρhra−ar(1h|2h)︸ ︷︷ ︸
horizon spectral fcn

,
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ρh
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Where the horizon spectral density

ρhra−ar(t1, t2) = local due to canonical commutation relations

=2η
[−iδ′(t1 − t2)

]
(2ωη in Fourier space)



Detailed Balance

Grr(ω, r1, r2) =
(

1
2 + n(ω)

)
ρ(ω, r1, r2)

Gravity

UV Quant Flucts

xo

x(t, r)

1. Fluctuations (Anti-commutator)

Grr(ω, r1, r2)︸ ︷︷ ︸
bulk flucts

= GR(ω, r1|rh) GR(ω, r2|rh)︸ ︷︷ ︸
outgoing Green fcns

(
1
2 + n(ω)

)
2ωη︸ ︷︷ ︸

Horizon-flucts

2. Dissipation: (Commutator)

ρra−ar(ω, r1, r2)︸ ︷︷ ︸
bulk spec dense

= GR(ω, r1|rh) GR(ω, r2|rh)︸ ︷︷ ︸
outgoing Green fcns

2ωη︸︷︷︸
Horizon spec dense



Fluctuation dissipation and stochastic dynamics

xobs ∼ 1
λ1/4T

r = 1

r = rm

t1

t2

t3

average

1. Every step t1, t2, t3 fluctuates to a new trailing string – → random force

2. The average of the trailing strings gives the drag – average string→ drag



Non-equilibrium



Non-equilibrium setup Chesler-Yaffe

1. Chesler&Yaffe create QGP by turning a gravitational pulse in vacuum

2. Corresponds to non-equilbrium geometry with BH formation in AdS5

Geodesics falling into hole

Time

E
ve

n
t 
H

o
ri
zo

n

Diverging Geodesics



Fluctuations in non-equilibrium

Event Horizon

log correlation

here

Becomes stat correl

here

• Surface Properties – on event horizon

2πTeff(v)︸ ︷︷ ︸
Lyapunov exponent

≡

Metric−coeff︷ ︸︸ ︷
1
2
∂A(r, v)
∂r

∣∣∣∣∣∣∣∣∣
r=rh(v)

∝ extrinsic curvature



Result:

• General form of near horizon fluctuations in non-equilibrium

Ghrr(v1|v2) = −
√
η(v1)η(v2)

π
∂v1∂v2 log |1− e−

R v2
v1

2πTeff(v′)dv′ | .

• Can map the near horizon fluctuations up to boundary (numerics in progress)

Event Horizon

Gh
rr

GR

GR



Not conclusions, but picture:

Gravity

 

Black Hole r = 1

“Our” world r =∞

Gravity pulls down, but quantum fields fluctuate, reaching equilibrium
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