Moments of characteristic polynomials enumerate two-rowed
 lexicographic arrays

E. Strahov

Eugene.Strahov@brunel.ac.uk

February 17, 2002

Abstract

A combinatorial interpretation is provided for the moments of characteristic polynomials $Z(U, \theta)=\operatorname{det}\left(I-e^{-i \theta} U\right)$ of random unitary matrices. This leads to a rather unexpected consequence of the Keating and Snaith conjecture: the moments of $|\xi(1 / 2+i t)|$ turn out to be connected with some increasing subsequences problems (such as the last passage percolation problem).

Conjecture. (Keating and Snaith)
The limit:

$$
\begin{equation*}
I_{m}=\lim _{T \rightarrow \infty} \frac{1}{(\log T)^{m^{2}}} \int_{0}^{T}|\zeta(1 / 2+i t)|^{2 m} d t \tag{1}
\end{equation*}
$$

exists and is equal to a product of two factors, $f(m)$ and $a(m), i$. e.

$$
\begin{equation*}
I_{m}=a(m) f(m) \tag{2}
\end{equation*}
$$

The first factor $a(m)$ is the zeta-function specific part,

$$
\begin{equation*}
a(m)=\prod_{p}\left(1-\frac{1}{p}\right)^{m^{2}} \sum_{k=0}^{+\infty}\left(\frac{\Gamma(k+m)}{k!\Gamma(m)}\right)^{2} p^{-k} \tag{3}
\end{equation*}
$$

and the second factor $f(m)$ is the random matrix (universal) part

$$
\begin{equation*}
\left.f(m)=\left.\lim _{N \rightarrow \infty} N^{-m^{2}}\langle | Z(U, \theta)\right|^{2 m}\right\rangle_{U(N)} \tag{4}
\end{equation*}
$$

- I provide a combinatorial interpretation for the moments of characteristic polynomials, $\left.\left.\langle | Z(U, \theta)\right|^{2 m}\right\rangle_{U(N)}$
- These moments are related with two-rowed lexicographic arrays which are generalizations of permutations and words in combinatorics.
- An explicit formula is obtained for the total number of two-rowed lexicographic arrays constructed from the letters of an alphabet of m symbols with the increasing subsequences of the length at most N.
- The random matrix part $f(m)$ defined by equations (1)-(3) is related with the weakly-right/weakly-up lattice model of the last passage percolation.

Increasing subsequences of lexicographic arrays and $\left.\left.\langle | Z(U, \theta)\right|^{2 m}\right\rangle_{U(N)}$

- Two-rowed array of the size K :

$$
A_{2, K}^{m}=\left(\begin{array}{cccc}
u_{1} & u_{2} & \ldots & u_{K} \\
v_{1} & v_{2} & \ldots & v_{K}
\end{array}\right)
$$

- The letters $u_{1}, u_{2}, \ldots, u_{K}$ and $v_{1}, v_{2}, \ldots, v_{K}$ belong to an alphabet (any ordered set) \aleph_{m} of m different letters.
- Lexicographic arrays \Leftrightarrow

$$
\left\{\begin{array}{l}
u_{j}<u_{j+1} \\
\text { if } u_{j}=u_{j+1} \text { then } v_{j}<v_{j+1}
\end{array}\right.
$$

- Lexicographic array \leftrightarrow pair of semi-standard Young tableaux
- $l\left(A_{2, K}^{m}\right)$-length of the maximal (weakly) increasing subsequence of $A_{2, K}^{m}$
- $R_{m, N}^{K}=\sharp$ of $A_{2, K}^{m}$ with $\quad l\left(A_{2, K}^{m}\right) \leq N$

$$
R_{m, N}=\sum_{K=0}^{+\infty} R_{m, N}^{K}
$$

- $d_{\lambda}(m)$ - \sharp of semi-standard Young tableaux of shape λ with entries from $[1,2, \ldots, m$]

The Robinson-Schensted-Knuth correspondence gives:

$$
\left.R_{m, N}=\sum_{K=0}^{+\infty} \sum_{\lambda \vdash K, \lambda_{1} \leq N} d_{\lambda}^{2}(m)=\left.\langle | Z(U, \theta)\right|^{2 m}\right\rangle_{U(N)}
$$

Combinatorial interpretation: $\left.\left.\langle | Z(U, \theta)\right|^{2 m}\right\rangle_{U(N)}$ equal to the number of two-rowed lexicographic arrays constructed from an alphabet of m symbols with the weakly increasing subsequences of the N elements at most.

- The Keating and Snaith formula:

$$
\left.\left.\langle | Z(U, \theta)\right|^{2 m}\right\rangle_{U(N)}=\prod_{j=1}^{N} \frac{\Gamma(j) \Gamma(j+2 m)}{[\Gamma(j+m)]^{2}}
$$

(5)

- The equality between the number of arrays $R_{m, N}$ and the moments of characteristic polynomials gives:

$$
\begin{equation*}
R_{m, N}=\prod_{j=1}^{N} \frac{\Gamma(j) \Gamma(j+2 m)}{[\Gamma(j+m)]^{2}} \tag{6}
\end{equation*}
$$

Example. Alphabet: $\aleph_{m}=(a, b), \quad m=2$.
A typical lexicographic array:

$$
\left(\begin{array}{llll}
a & a & b & b \\
a & b & b & b
\end{array}\right)
$$

An example of a two-rowed non-lexicographic array :

$$
\left(\begin{array}{cccc}
a & a & b & b \\
a & b & a & b
\end{array}\right)
$$

(second letter of the word abab, b, is larger than the third letter of this word a)

All possible two-rowed lexicographic arrays from \aleph_{m} with the weakly increasing subsequences of the length at most $N=2$:

$$
\begin{gathered}
\binom{\varnothing}{\varnothing}
\end{gathered}\binom{a}{a} \quad\binom{a}{b} \quad\binom{b}{b} \quad\binom{b}{a} \quad\binom{a b}{a a} .
$$

There are 20 arrays with the required properties. The formula (6) obtained above gives precisely this number, i.e.

$$
\mathrm{R}_{m, N}=\prod_{j=1}^{N} \frac{\Gamma(j) \Gamma(j+2 m)}{[\Gamma(j+m)]^{2}}=20 \quad(m=2, N=2)
$$

- $X(i, j), \quad i, j \in[1,2,3, \cdots, m]$:
a planar array of independent integers

$$
X(i, j)=\begin{array}{ccccc}
* & * & * & *_{\mathrm{ij}} & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}
$$

$*_{\mathrm{ij}} \equiv$ the passage time at (ij)

- $(1,1) \searrow(m, m) \equiv$ the set of down/right paths from $(1,1)$ to (m, m)
- $T(m, m)=\max _{\pi \in(1,1) \backslash(m, m)} \sum_{i, j \in \pi} *_{\mathrm{ij}} \equiv$ last passage percolation time to travel from $(1,1)$ to (m, m)
- \sharp of $X(i, j)$ with $\left.T(m, m) \leq n=\left.\langle | Z(U, \theta)\right|^{2 m}\right\rangle_{U(N)}$
$=\prod_{j=1}^{n} \frac{\Gamma(j) \Gamma(j+2 m)}{[\Gamma(j+m)]^{2}}$

